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Foreword

!
This reportis one of a seriespreparedby the Bell HelicopterCompany,
FortWorth,Texas,for the NationalAeronauticsand Space Administration,

I Research MoffettField,California,underContractNAS2-6599.
Ames Center,
TheseTilt Rotor ResearchAircraftstudie_were jointlyfundedby NASA '
and the U. S. Army Air MobilityResearchand DevelopmentLaboratory,Ames

I Directorate. "
The AdministrativeContracti.ngOfficerwas Mr. RichardJ. Abbott. The

I TechnicalMonitorwas Mr. MartinD. Maisel,Tilt RotorResearchAircraftProjectOffice. Mr. Gary B. Churchill,Tilt RotorResearchAircraft °
Projectprovidedtechnicalsupportto the effortreportedin VolumeV.

,;

I VolumeI -- V/STOLTilt Rotor Study - ConceptualDesign--CRI14441

_ VolumeII -- V/STOLTilt Rotor Study - ResearchAircraft
" I[ Design-- CRI14442 :

•w m Volume Ill -- V/STOLTilt RoLorStudy - ResearchAircraft
| ProjectPlan -- CRI14443

VolumeIV -- V/STOLTilt RotorStudy - Wind Tunnel Investigatio_

I Plan - CR114444

VolumeV -- V/STOLTilt Rotor Study- A MathematicalModel

I for RealTime FlightSimulationof the BellModel301 Tilt Rotor ResearchAircraft-- CRl14614 ,_

Volume';I -- V/STOLTilt Rotor Study- Hover,Low Speed and

I Tests of Tilt RotorAeroelastic
Conversiort a
Model -- CRl14615
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I. S UMMAR+

I
Two series of tests evaluated the stability and control charac-

I teristics of a one-fifth scale powered aeroelastic model of theModel 300 Tilt Rotor Research Aircraft in hover, lot7 speed heli-
copter, and ccnversion flight. Hover tests took pia:c in the
Bell Helicopter Company rotor whirl cage from September 13, 1972

I to December 22, 1972. Helicopter and conversion mode tests tookplace in the Vought low speed wind tunnel from January 15, 1973
to March 30, 1973. This testing was performed under NASA Con-
tract NAS 2-6599.1

il : The hOver testing was directed at measuring hOverperfOrmance.

and roll static stability characteristics. During part of this
testing, the model was secured to a mount which simulated free
flight to investigate stability characteristics and control
re sponse.

'+ I The helicopter and conversion mode testing was in two phases,
with a different mount for each. The first phase had the model

I mounted on the vertical rod sho_ in Figure I-I. This mountgave the model freedom to pitch, roll, and yaw and to translate
vertically. Model "pilots" c_"Id adjust cyclic pitch, collec-
tive pitch, and elevator po_ tloa to hake the model fly in a

I trimmed flight condition. Trimmed flight conditions tested
included level flight (OGE and IGE), climbs, descents, auto-
rotation, and rearward and sideward flight. At selected flight

I conditions the model was disturbed from trim to investigate "+dynamic stability characteristics.

I The second phase had the model mounted on a sting support, asshown in Figure 1-2. Forces and moments were recorded with the
model in the trim attitudes and its controls in the positions

established during the first phase. Pitch and yaw sweeps about

_ I the trim condition determined the static stability character-istics. Tail-on, tail-off, rotors-on, and rotors-off configura-
++'+ tions were tested to determine the influence of the rotor wake

I on the empennage.
.,,++. The principal results of the tests are as follows:

(I) The hover test confirmed the presence of a static _.__.
roll instability in an IGE hover. Figure 1-3 shows
the roll instability in terms of inches of lateral

I stick required to balance the unstable rolling moment.The roll instability vanishes at airspeeds above

_+ approximately 20 knots. -

I (2) ."he hover test showed the wing download to be greater
._. than that estimated from previous test results. The +'--
;,&- measured download was ii._ percent, compared to the 7

++'<.
-'_ 301-099-002 I-i
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i (2) Continued
percent estimated for the full-scale aircraft.
Analysis indicates this discrepancy may be caused

I by the model's very low Reynolds number.
(3) Flow visualization techniques confirmed that the

i wakes from the two rotors do not merge in the flightconditions tested, and an analysis of empennage
kalance data indicates that the wakes produce a net
upwash at the horizontal stabilizer. The upwash is

I greater IGE than OGE. Vortex lift produced by therolled up rotor wakes is a significant factor in the
effect of the rotor wake on the empennage.

I (4) At mast angles of 90 a_d 75 degrees, the longitudinal
stick gradient is shallow between hover and 60 knots

i with a slight stick reversal occurring between 20 and40 knots (see Figure I-_). The shallow gradient and
reversal are caused by the rotor wake upwash on the
horizontal stabilizer.

I (5) The interaction between the rotor wake and the hori-
zontal stabilizer causes a nose-up pitching moment when

I the aircraft is yawed. The longitudinal cyclic required _!to compensate for the pitching moment, sho_1 in Figure
1-5, is easily within a pilot's ability. On the Model

I 301 aircraft, with the SeAS on, the attitude-hold loop i_will make the longitudinal cyclic input.

(6) At mast angles 90, 75 and 60 degrees, the rotor wake

I acts on the vertical fins in such a manner as to reducedirectional stability for sideslip an_les less than

;';_?:'_ I about 12 degrees and to increase it for iarger sideslip _

angles. At mast angles 90 and 75 degrees and at speed
less than 60 knots, the rotor wake causes this air-

=_._';_| ofcraftsideslip,to be directionally unstable between _4 degrees I_!i
_i'_ | (7) In autorotation at the speeds tested (80 and 90 knots),

the model was very stable but had a rate of descent in

I excess of 4000 fpm, compared to the 2200 fpm predicted• for the Model 301. Analysis indicates that the model's _/
low Reynolds number is responsible for its higher rates
of descent. The rate of descent predicted for the

Model 301 is still considered to be correct.

(8) On the rod the mod_l was difficult to fly at speeds
, below 30 knots, but was controllable. Above 30 knots,

the model was relatively easy to fly. Controllability _._
_ was adequate for rearward and sideward flight at

,_, speeds up to 35 knots. It was not possible to fly the

,_" II

301-099-002 1-2
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• (8) ContinuedI model in a sustained conLrolled hover in the hover test

rig. Failure to accomplish this task is attributed to

I the faster response characteristics of the model (2.2_times full scale) and because of the lack of many of
the normal pilot cues. It should be noted that the

I model was not equipped with a stability augmentationsystem (SAS).

(9) Correlation between theory 2 an@ measured trim atti-

I tudes and control positions is generally good whenReynolds numbers effects on the model are accounted
for.

I (i0) Lateral flapping in helicopter mode was approximately

50 percent higher than predicted, as shown in Figure
1-6, but was within flapping limits for a_l conditions

tested. Analysis shows that the
computer representa-

tion of the longitudinal distribution of rotor induced
velocity was not representative of the actual

i longitudinal distribution. By modifying the computerrepresentation good correlation with the measured
flapping was obtained. The modified method is satis-

I factory for design purposes, i
(ii) There was no evidence of rotor or rotor-pylon-wing %1

instability during the tests.

(12) Scaled rotor and control system loads were signifi- ,
cantly lower than those predicted for the full-scale i

I aircraft.
(13) Airframe vibration levels were higher than predicted

i but within design limits.
Note: In referring to the Model 301 throughout the

repozt, the Model 301 is of similar configuration as ___v_ilthe Model 300. The Model 300 data is therefore con-

I sidered applicable to the Model 301.

!

' 301-099-002 I-3 _
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I Figure I-i. Powered Aeroelastic Model on Vertical RodMount, LTV LSWT Test _18, January 1973.

I

I

_ L ,L,it

I
- Figure 1-2. Powered Aeroelastic Model on Sting Mount,
_ LTV LSWT Test _21 March 1973. " "-

t __.

_b
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I I. I NTRODUCTI ON

I This report presents the results of an investigation into the
hover, low speed helicopter and conversion flight characteristics

I of the Model 301 Tilt Rotor Research Aircraft. A one-f_fth scale,powered aeroelastic model of the Bell Model 300 tilt rotor aircraft
was tested to determine performance, stability and control, and

i aeroelastic characteristics. The Model 300 and 301 are nearlyidentical designs differing primarily in the power plant instal-
lations; therefore, the results of the tests are readily applicable
to the Model 301. The principle objectives were to identify if

I any significant problems existed and to obtain data on rotor wake/airframe aerodynamic interference for use in the Model 301 real-
time flight simulation mathematical model. The investigation

I was conducted under NASA Contract NAS 2-6599.
A. Previous Tests

I Scale model testing of the Model 300, under way since 1968,
has been directed at verifying that the aircraft met design
requirements• These tests were a part of Bell Helicopter

I Company's tilt _otor IR & D program. One-fifth scale aero-dynamic and aeroelastic models were designed and fabricated
to confi_ airframe performance, stability characteristics,

, dynamic design criteria, and demonstrate the aircra_tl_°o-_ be| fre_ from flutter or other aeroelastic instability. Air-
plane configuration tests of the aeroelastic model (unpowered)
in the NASA Langley 16-foot Transonic Dynamic Tunnel were suc-

I in 1972. This confirmed the
cessfully completed April test

• Model 300 to be free of rotor-pylon-wing instability and
other forms of aeroelastic inscability at all speeds up to

I 1.2 times limit dive airspeed, that the aircraft short period., and Dutch Roll modes are adequately damped beyond the limit _i
dive airspeed of the aircraft, and that loads and vibration

I levels are within design limits The results of the airpl_e
• _w

test program are discussed in Reference 12.

B. Technical Backsround

The results of the XV-3 convertiplane tests 13 recent tests _,
of a powered force model I_, and analysis o_ the Model 301 _

I stability and control characteristics were the basis for plan-ning the current series of investigations. During the XV-3
flight test program several stability and control problems

i were noted in hover and low speed helicopter flights• Noserious flying problems were encountered when o_rating at
.-_ intermediate conversion angles or when converting• In air-
_, plane flight the only significant problems were light damping -.

! of the Dutch Roll and longitudinal short period modes and
• excessive transient flapping during ,na,euve_s. A full scale
_ wird tunnel test later indicated the potential of rotor-pylon- --

wing aeroelastic instability. The model tests, discussed

! above, have verified that the airplane flight problems have

: 301-099-002 II-i
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J! been solved in the Model 300 and 301 designs. Problems en-countered in hover and low speea helicopter flight during
the XV-3 program, _ome of which have been addressed durir_

j! this test program, are summarized in Table II-l.

I [i Items 6 ana 7 in Table II-I have been corrected in the Model

301 design bf providing adequate control power about all
three axes. The pitch control power is 4.5 times, and the
yaw control 2°74 times that of the XV-3. Item 3, likewise
has been corrected in that the Model 301 has considerable

_ !i excess power, whereas the XV-3 had insufficient power to' hover. A blade-pitch governor, rather than pilot coordina-

_ tion, will automatically maintain rotor speed. As a result,

the pilot effort rcquir_:d in the Model 301 to cope with the
• power rise is reduced to a level comparable to typical

turbine-powered helicopters. The other _tems listed are
• inherent in the tilt rotor concept and ara expected to

I in the Model 301 discussed in the
occur to some degree as

section noted. The subject investigation was directed at

I _ evaluating the magnitude of these problems and in obtaining
I data for use in real time flight simulation of the Model 301.

The latter objective is significant since the real t_ _e
flight simulate'on will be used to guide the design of the

I Model 301's Stability and Control Augmentation System which

I provides a substantial improvement in the flight chacacter-
istics in hover and in low speed helicopter flight. (The
XV-3 did not have a stability and control augmentation system.)

C. Sco_e ' of the Program

I The test program was accomplished in four tasks. -,
'" 1. Task I Pretest Activities

_ Modifications were made to the model to meet the test •
__. requirements as follows : "

I " Addition of rotor drive system and motors

" Remot_ controlled rotor cyclic, differentia __

I cyclic, collective, and differential collec- _rive. Controls were designed with frequency _" ""
-- response characteristics required to "fly"

i the model in semifree flight.
• Install a strain gage balance in the .- ..
empennage to measure horizontal stabilizer

I normal force and rollin_ moment.

A hover test rig was designed for the s_mi_ree flight
hover tests.

301-099-002 II-2
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_ 2. Task II Hover Test

-a_. The hover test was accomplished in tw_ ptmses-

_ Phase I - obtain performance and static stability datam

_ _ Phase II Obtain controllability data
7.'

,_'i 3. Task III Wind Tunnel Test

_ :. d tunnel testing was in the low speed helicopter and
_ con, ;rsion flight configurations. The model was tested

|.":, in the Vought Aeronautics Low Speed Wind Tunnel located

in Grand Prairie, Texas.15 The Vought tunnel has a 15 by20-foot test section that can operate through a speed

I range of 9 to 77 feet per second and was ideal for thistest progcam. Two types of mounting systems were used
during this testing.

I Phase I - Rod mount test which allowed the model
, to pitch, roll, yaw, and translate vertically.
' D_ring this test trim flight data was obtained,

I dynamic stability characteristics were deter-mined, and controllabilit°f was evaluated.

Phase II - Sting mount test with a six-componentinternal balance. This testing provided nec-
essary data to define rotc_ _/ake/airframe aero-

i dynamic _nterference. ..

4. Task I_ DocumentationI This task consisted of technical reports on programprogress and analysis of test results.

-_" I D. Objectives of the Program
n

-_. The investigation had the following specific objectives: -_

t i. Measure roll static stability in hover as a function _
"' of hovering height (h/D). ,-

I 2. Examine controllability in hover by "flying" the model _'in near free flight conditions. "._ '"

1 3. Determine control settings for trimmed level _.ight,
climbs, descents, rearward, and sid=w_z-_ flig , both
in and out of ground effect. ..,

_. Measure dynamic stability characteristics in low speed
helicopter and conversion flight. -_-

301-L99-002 II-3
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o. _,_estigate co_ttrollab_lity in low speed helicooter an4

conversion flight.

_i 6. Measure autorotational rate of descent and control

_" I positions.

7. Measure rotor wake effects on the empennage In sufficient
_ I flightdetail simulation,to develop a mathematical model for real-time

_i 8. Measure rotor and control system loads, airframe vibra-
tion, and aeroe]astic stability during hover, low speed
helicopter, and conversion flight.

?

..... _ I All of these objectives were accomplished and the resultsare reported and discussed in the following sections.

!

I

_. _.

• i

I ,1

I
I
I

k
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I Problem Encountered During Action Taken During

the XV-3 Test Program 13 The Test Program and

I Resolution of Prob-lem in M301 Design
i. Roll !ns_tability, IGE

I '%4hen hovering within 5 feet of the
Action:

ground the XV-3 exhibited an erratic LLover test to measure
tendency to dart laterally. These roll stability,

I characteristics were considered un- Section V-Aacceptable. Above a 5 foot skid
height, these characteristics dis- Resolution:

I appeared and a stabilized hover over Improved controla spot was accomplished without power and addi-
difficulty. .-- When approaching the tion of SCAS which
pn_r required for hovering lift-off provides additional

I the aircraft reacted with lateral roll damping
a

oscillation that was disturbing to
the pilot."

!
2. Low Speed Stick Reversal

l •"At low forward speeds (15 to 20 Action:
knots CAS) and small conversio_ Rod test, cyclic
angles (c_m = 90 ° to 750), there stick position for

I was a longitudinal stick position level flight, Sectionreversal. This characteristic had V-B

_ to be anticipated for each take-
_ | off." Resolution: ,

Improved control pow-
r, er with small stick

3. Increase in Power Required as reversal (within M_L- "_,

_. I Hovering Flight is Approached SPEC Requiremen_ _

% "At speeds between hover and best Action:

_ _ climb speed there was a large re- Rod test demonstratc_ _-
- duction in power required, which the effect ef power _-.,_

provided good forward acceleration (torque) change with
and STOL capability. -.. When airspeed, Section
approaching for a zero speed landing V-B
the change in power was even more
pronounced. As hovering flight was Resolution: "_
approached (approximately i0 knots Increased power
CAS) there was a sudden requirement available and blade-
for an additional 9 to i0 inches Hg pitch governor to
manifold pressure. Even though give pilot effort

• gin,
_, 301-099-002 11-5

1973022218-030



{

(_ BELL I _'"_ :r r',s,: ', ",, ' .:': r " ,: ,
HELICOPTER coMr-._'_'_ J _.,:',I,,_T ". ',_, ,;,I, " • .,_ •

TABLE II-I. (Continued)

D_r_,,gProblem Encountered During Action Taken " ;_
the XV-3 Test Program 13 The Test Program and

Resolution of Prob-

3. (Continued) lem in M301 Design

[ anticipating this condition, it was comparable to t,zpical
nearly impossible to prevent the air- turbine-powered heli-

i craft from suddenly losing 2 or 3 copter.I _ feet of before
altitude sufficient

power for stabilized hover could be
obtained. This characteristic was

undesirable and was considered a
safety of flight item."

I 4. D}-namic Directional Stability and
_it:ch With Yaw

I Action :"'In general, the stability and con- Dynamic stability
trollability characteristics in the check during rod
helicopter level flight regime were test, Section V-B,

I satisfactory except at speeds below static directional35 knot_ CAS. At low speeds a stability, sting
divergent long-period (6 seconds test, Section V-C,

I per cycle) directional oscillation and analysis ofwas apparent. The amplitude of rotor wake during
this oscillation increased to the sideslip, Section

point where the tail swung into the VI-A .:proprotor wash, promptly inducing Resolution:
nose up pitch." Addition of SCAS

_= 5. Dynamic Longitudinal Stability

"_<_" i "Longitudinal dynamic stability in Action:configuration H and C15 was excel- Dynamic stability
•

lent above _0 knots CAS. Response check during rod _,
:_ _ to a pulse input of the longitu- test, Section V-B _

dinal control was essentially dead- ii'_

_. beat. At 25 knots or lower an un- Resolution:
.... acceptable pitching oscillation was Addition of SCAS
_: _ present. It was virtually impossible

m to stabilize the aircraft longitu-
dinally in this low speed regime."

I
6. Longitudinal Controllability __

I "The Iungitudinal maneuverability No testing of controlwas unacceptable in the low speed power, Model 301 -_--
(30 knots CAS or less), small con- control power higher

_,; | version angle (C15 or Less) regime, than XV-3
|

•_;_ 11-6
_ _ 301-099-002
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_ TABLE II-1. (Confinued)

I Dur in_Problem Encountered During Action Taken
i_ the XV-3 Test Program 13 The Test Program

l 6. (Continued)
iN

}% The primary problem was in the poor

_ I response to control inputs. For' example, in C15 at 30 knots CAS,

after 0._ inch aft control pulse,

2.3 seconds were required to obtain

l the maximum pitch rate of 3 degrees
per second. --- At a higher speed,

"_ _2 knots, 1.9 degrees per second was
• recorded after 0.7 seconds after a

similar stick displacement. The 0.7
second response time was acceptable."

:!
7. Directional Controllability

I "The directional maneuverability No testing of controlwas unacceptable primarily because power, Model 30]
of poor response characteristics, control power higher

I At 30 knots CAS in configuration than XV-3H, a maximum rate of yaw per inc _
pedal displacement of 12._ degre._s

i per second was recorded. However,__ more than 3 seconds were required to

reach this maximum rate of yaw. ._
_ -.. The excessive delay time is •

i'__ _ especially irritating in the XV-3 ._
• because of the poor lateral direc-

_ tional stability characteristics in "
, the low speed regime." _ II
i

I

' I
I

t
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I III. DESCRIPTION OF THE MODEL
I

The model tested is a one-fifth length scale, dynamically and

I aerodynamically similar model of the Bell Model 300 Tilt RotorResearch Aircraft. The model was designed and fabricated under
Bell's Tilt Rotor research program and prior to this test pro-

I gram had been used for tests involving over 900 hours of testsection occupancy. As noted earlier in Section II the purpose
_ of previous testing was to investigate aeroelastic and flight

stability characteristics in airplane mode. The tests were con-

I ducted with the model unpowered, since the windmilling thrustcondition is the most critical from the standpoint o£ rotor-
pylon-wing stability. These tests were made using remote trim

I type collective pitch and elevator controls. For the hover,low speed helicopter, ar.d conversion tests the model was powered
and had proportional type controls.

I A. Model Sca lin_

Scale factccs for the aeroelastic model are given in Table

I III-I. All components of the model have been weighed andswung to determine inert_ , properties and, where possible,
stiffness properties have been measured. Vibration sur-

I veys have been conducted to verify dynamic similitude(see Reference 12). A force and moment wind tunnel test
of the airframe less rotors has verified that the aero-
dynamic characteristics are the same as the Model 300 force

I and moment
model.

B. Construction and Design Parameters

I The basic dimensional parameters for the aeroelastic model 4

are given in Table 111-2 along with the corresponding full !_

I scale design parameters. A description of the model com-ponents are as follows:

I. Fuselage _ '

I fuselage an __°_ The is aluminum box partially foamspar,
_'._ filled, which represents the fuselage stiffness both

_. I in bendlng and torsion. Figure III-I shows the fuselage
_ spar during buildup for the sting mount test. Non- _,L:.structural fiberglass fairings, shown partially in-

i stalled in Figure 111-2, form the fuselage contour.The fuselage houses the instrumentation package, the
motors, a_" well as balance weights used to simulate

,_- gross weight and center of gravity configurations. -'

I

_ 301-099-002 III-1

1973022218-033



II I
till,I/HEU(_OII_r'rlE_R cc_l,,_u_v subjecltoth_ :oslr,chonon lhe htleI_v_e

2. Empennage

I The horizontal _tabilizer is composed of an aluminum
spar which provides the required beam, chord, and

I torsional stiffness, and nonstructural segmentedbalsa and fiberglass fairings which give the aero-
dynamic shape. The elevator is remotely controlled. ,,,_

i The mass balance of the elevator is duplicated. Thevertical stabilizers, made entirely of balsa, were not
designed to give the correct stiffness properties but
have the correct mass, center of gravity and inertia.

I The rudders are not provided on the model.

A two component empennage balance was designed and

I fabricated for the helicopter and conversion portionsof this program. The balance measures empennage lift
and rolling moment. Figure III-3 shows a close up of

i the empennage balance. Empennage incidence is groundi adjustable. ._

3.
i .The bending and torsional stiffness chmracteristics of

the wing are scaled by an aluminum spar filled with

I aluminum honeycomb. Aluminum-covered, nonstruc tural, _segmented fairings provide the aerodynamic contour.
lead weights attached to the spar simulate fuel weight. _

| The wing spar is made in three parts: left and right ":i
sections (with 6.5 degrees forward sweep) and a carry- _'_
through center section with zero sweep. This arrangement

I maintains the chordwise location of the wing elastic _,axis. The attachments of the outer segments to the ._.

center section are at buttline 5.6 (model scale). This i
is also the location of the wing fuselage attachment,

simulating to some degree the full scale wing-to-
_ fuselage load paths.

I The wing-pylon attachment is at buttline 35.85 (model

_ scale). The full scale load paths are maintained through_ the ribs which carry the conversion spindle hanger bear-

,_: ings.

$. Nacelles

I The distribute_ stiffness properties of the nacelle
.... structure is not scaled, but mass, center of gravity,
,,_, inertias, and mounting stiffnesses are matched to ""

I give the correct frequencies. Non-structural fiberglassfairings house the transmission drive system, collective __
•' dr_ve system and dummy engine mounts. The engine mounts

_,!_- | are designed to give the correct engine pitch and yawnatural frequencies. The transmissions have full-scale

, 301-099-002 111-2
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4. (Continued)

gear ratios, therefore, the interconnect torque char-
acteristics are scaled. (However, the torsional stiff-
ness of the interconnect shafting is not scaled. It

I is several times the full-scale equivalent stiffness.)

Conversion struts with scaled axial stiffness provide

I the correct wing torsion (pylon pitch) natural fre-quencies in helicopter and conversion modes. The
struts allow for manual adjustment of the pylon con-
version angle from 95 ° (helicopter mode) to'0 ° (air-

I plane mode) degree increments.
in fifteen

5. Roters

E The blades are constructed to scale the appropriate
material modulus, beamwise, chordwise, and torsional

stiffness. Both the blade spar and the outer shell are

i _ fiberglass. The aluminum blade grips, which carry the

pitch-change bearings, are bonded to the blade structure
at the blade root. The aluminum hub yoke rings are
machined to represent the yoke inplane and out-of-plane
stiffness. Stainless steel spindles are assembled with
a thermal fit to the hub. The retention system for

I attaching the blades to the hub duplicates the fullscale design. The rotor system is shown in Figure 111-4.

6. Drive System
Power for the rotors is provided by two task motors
(3.4 horsepower each) mounted aft of the center wing

i section in the fuselage as shown in Figure 111-5. The_ motors drive forward to individual right angle gear-

boxes which in turn power the rotor interconnect drive I W

I shaft. A two layer fiberglass coupling to relieve mis-alignment is located between each motor and gearbox. At _.

_:._, the beginning of the test a coupling between the motor

" gearbox and the interconnect shafting was also used. _:"
I Following failures of this coupling during testing, the

drive system was redesigned to eliminate misalignment _,

i I between the gearboxes and the interconnect shaft and _
couplings were added between the left and right gearboxes. ;
Figure 111-5 shows motors and gearboxes following a
coupling failure prior to the redesign of the drive sys-

tem. Additional couplings are used along the inter-connect shaft outboard of the motors and at the out-

°_' board section of the wing to relieve misalignment. The __
, interconnect stmft connects to 90 degree gearboxes
| mounted on the pylons. The pylon shaft is mounted to

_ the pylon axis and drives two stage planetary gearboxes. ---
,L, The output shaft of the planetary gearboxes has a
Y

_ 301-099-002 111-3
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I I o. (Continued)coupling which enables the rotors to be readily dis-
connected from the drive s/stem. The gear ratio of the

I transmission is 17.6 to i; t_us with the rotors at 1260rpm, the normal operating speed, the interconnect shaft
is turning at 22170 rpm.

i C. Model Controls

A dc servo feedback system was used for the rotor c_ntrols

because of the advantages of simplicity and reliabilityoffered by the dc system. To determine design requirements
for the rotor controls a mathematical model of the IGE hover

] dynamics, including the roll static instability, was derivedand programmed on an analog computer. Several of the model
"pilots" flew the math model using a control stick similar
to that used wit_ the aeroelastic model. Each pilot evalu-

"" [i ated control systems having varying amounts of hysteresis,
various time constants and values of rate limiting. The

following design parameters were established: (I) hysteresisI] of two percent maximum, (2) time constant of 0.15 seconds
maximum, and (3) rate limit of 3.5 degrees per second minimum.
These are applicable to the model-pilot system and cannot be

! directly related to full-scale. A dc servo system which metthese requirements was designed and fabricated. The system
provided collective pitch, differential collective (for roll
control), longitudinal cyclic, and differential cyclic (for

yaw control). t

The elevator and ailerons were controlled using "beep" type

controls. Flaps and empennage incidence wer" ground adjustable. '_- _

D. Natural Frequencies i
Prior to wind tunnel testing of the model in airplane mode a i

_ complete shake test was performed to verify placement of
_ natural frequenciesl2. Comparison of the frequencies ob-

._ [ tained at that time with those calculated for the full-scale.. design indicated a good dynamic similitude. Therefore,

I prior to testing the model in helicopter mode it was only i

necessary to confirm the location of modes affected by _
nacelle conversion.

P

As noted earlier, conversion struts having scaled axial

I stiffness used to provide the correct pitching mode
were

, frequency of the pylons. As shown in Table 111-3 the mea-
_ sured pitching mode frequency is slightly above the full- -
i _ _cale equivalent frequency. However, this provided ade-

| quate margin with respect to one-per-rev resonance which
_ was a ma_or concern. The other important frequencies which -

_ • were affected by the change to helicopter mode are also
_! _ summar ize d.
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E. Instrumentation

I. General

I The model was instrumented to provide 61 channels ofdata as shown in Table 111-4. The loca_ions of the

transducers were chosen to provide the required informa-

l tion on loads and stability.
A maximum of 39 of the 61 available chan:Lels was multi-
plexed from the model to the Bell O_fsite Data Acquisition

I Package (ODAP). From the ODAP the data was recordedon magnetic tape and on direct write oscillographs,
with selected data monitored on panel meters.

I A schematic of the ODAP system as used on the model is
shown in Figure III-6. The components of the system
are identified as follows:

I • Model Patch Panel - This panel, in the
model, allows various trandsucers to

I be selected for signal conditioning andread out.

i - Signal Conditioners - These amplify the ..itransducer outputs to an analog output
of Z 2.5 volts full scale• There are !

39 signal conditioners available in the •

I model
Q

• Voltage Controlled Oscillator - The VCO
II uses the conditioned analog output of ,_
| each transducer to modulate the output

frequency of an oscillator• These out-

puts are mixed in a linear mixer amplifierto create a composite signal containing up
to 13 channels of data. There are 39 _

_' VCO's in the model which provide two channels _
I of multiplexed data. This minimizes model

umbilical cr_ss-section requirements forcarrying instrumentation data.

! " Discriminators - Twenty-six (26) discriminators ;,are available to return the multiplexed signal
to an analog form. These are mounted in the
portion of the equipment located in the model

_._, control room (Figure 111-7). Selected data
_ may be enlarged or reduced in amplitude at -

this point for display on panel meters
(Figure 111-8) or oscillograph recorders

:_'_ (Figure 111-9) All composite signals are --S, " •

also recorded on magnetic tape, also shown
:',4_ in Figure 111-7.

L 301-099-002 111-5
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; I. (Continued)

I li As shown in Figure III-8 a closed circuit 'IV was used

to monitor the test so that problems during a run
could be reviewed. The equipment used to monitor

temperatures and the power supply to the motors is

I shown in Figure III-i0.

"+ I 2. Model Rotating System

One blade on the right hand rotor was fully instru-

li mented with beam, chord, and torsion gages. In addi-tion the hub, rotating controls, and shaft were gaged
for pitch link loads+ blade flapping and shaft torque.
Both rotors were gaged for cyclic and collective pitch.

+'_' ]i l_.e right rotor was fitted with a 28-ring slipring.

An encoder wheel was mounted on each rotor shaft to

" ]I generate rpm and azimuth signals.
I/

3. Non-Rotatin_ System

Each wing spar was gaged for beam, chord and torsion. \+
Accelerometers were mounted on each pylon as well as

• along the fuselage to obtain dynamic data. Tae gimbal-

U ring mount to the vertical rod was instrumented toprovide fuselage pitch, roll, yaw and vertical posi- i
tion data. In addition a three axis gyro was used :,

to obtain pitch, roll and yaw rates. The horizontaltail was gaged for beam and torsion bending loads /
and the vertical tail had provisions for mounting
two accelerometers. _+

4. Balance Systems ,_,

I On the rod mount a strain gage balance was placed inthe model gimbal slider to measure the drag or thrust

i_ of the model. During the sting mount test, six com- +I ponent internalgravitybalanCewasdata referencedempennagetOthe aircraft_ center of recorded. The was

mounted on a balance (Figure III-3) which measured i_empennage lift and rolling moment. _+

_i n +
I

a' Ih

III-6
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-": TABLE III-i SCALE FACTORS FOR ONE-FIFTH SCALE MODEL IN AIR

I
Scale Factor

I Parameter (Model/Full Scale)
Froude Number 1.0

I Locke Number 1.0

Mach Number 0.4_7

I Reynolds Number 0.089_

I Length O. 2
Density 1.0

I Velocity 0.4_7

Time 0.4_7

I ':Mass 0,008

I Frequency 2.2_ _
Force 0.008 5_

I Power 0.00358

Bending Moment 0.0016

i W| "r Stiffness 0.00032

*_ I Bending Spring Rate 0.04 __,,
Torsional Spring Rate 0.0016 ,'

.J.,
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TABLE III-3. HELICOPTER MODE NATURAL FREQUENCIES

!
Mode Frequencies - tps

I Full-Scale ModelEquivalent blcasurcd

: I Wing Symmetric Beam 7.1.7 6.8

;_'_ I Wing Chord 11.20 12.0
: Wing Torsion (Pylon Pitching) 15.90 17.0

_ I Horizontal Tail Beam 2/4.0 26.C

: Pylon Yaw 25.0 26.0

1 I
Horizontal Tail Torsion 37.63 38.0

-'|
<

.q

-o|
.lb

t7 ',

: j
-r.

1
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,_ii 1 Figure I II-5. Model Motors, Couplings, and• Interconnect Shaft (Following

_" I Coupling Failure). ."._

!

| _._.
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-; Figure !II-8. Instrumentation, Model Pilot Controls

I Panel Meters and Closed Circuit TV.

_n

' I :.... £.
I

Figure III-9. Instrumentation, Oscillographs .....
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I IV. DES____CRIPTIONOF TESTS

I _ Test:; of t _ del 301 one-fifth scale powered aeroelastic

! mod_l were ucted during the period September 13, 1972
through _.Izrc _0, 1973 in four phas,_s :

I P Lmse I, Hover Test, September 13 - October 3, 1972 (19 hours

I I rotors turning) - This test was conducted in the Bell

Helicopter Company whirl _age, on a rod-mount, to inv_,_ i-
_ate hover performance and _tab_lity.

Phase II, Hover Test, December" _<, oo, 1972 (7 hours rotors
turning) - This test was _-,_:__'_,d _n the Bell Helicopter

I Company whirl cage, in _:c....'tee _iigi_t, to investigate• stability and control *".,: ,_nse.

i , Phase III, Rod Test, January 15- March 9, 1973 (220 _1o_ms

| occupany, 3_.5 hours _otors-turning) - This test was con-
ducted in the Vought Aeronautics low speed wind tunnel, on

i a rod mount, to investigate trimmed flight control position,

_ I performance, and evaluate overall flying qualities.

Pha,_ IV, Sting Test, Ma_uh 15-30, 1973 (107 hours occupancy,
16.7 hours rotors-turL,ing, ii.0 hours rotors-off testing) -
This test was conducted in the Vought Aeronautics low speed
wind tunnel, with an internal balance and mounted on a sting,

I to investigate static stability in yaw and pitch and measure ,rotor wake/airframe interference effects.

A. Hover Test
|

, i I. Phrase I Hover Test

• W

I a. Roll Stabili_ty Investigate'on

A vertical rod mounting s,._tem was used which pro-

I atVidedheight/diameterthemodel with(h/D)-+6 degreesratios fromof rollo,freedoml.0 _';_ 5 to •_: The model control was with rotor cyclic pitch, _

_:_ collective-pitch and d_.Ferential collective-pitch.

; I_,_: The test rig shown in Figure IV-l, permitted the :
rolling moment required to hold the model at a _'-,
given roll angle to be measured at any roll angle.

I The required moment was measured with the rotorsstopped and with the rotors thrusting. The model
" was tested with the wing panels on and w_ th _be ..
_ panels removed (Figures IV-2 and IV-3) at h/D -

I ratios of 0.75 and 1.0 to determine the0.5,
influence of the wing/rotor interactions. ------.

,? •
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I b Wing Download Investigation
I

The wing download due to rotor dog, wash was investi-
gated at h/D ratios from 0.5 thru 1.0 with the wl.°_.o
panels on and with the panels remo',ed- The model

i was counterbalanced so that hover performance could
_ be investigated at net-thrust values of 50 pounds

: to I00 poLmds (6250 pounds to 12500 pounds full-
_' scale.

c. Optimum Fla; Settin_ to M_nimize Hover Down]cad

•; Various flap settings were tested a_ h/D = 1.0 to
investigate hover download. The flap/aileron

i |7 setting t_ste_ were 0/0 ° 45/25 ° 60/45 ° 75/45 °
_ |'_ and 75_75 .

_ 2. Phase II Hover Test
a. Stability and Control Response

"_ _" The model was mounted on a translational hover test

" _-' rig such that free flight was nearly simulated.
The model was free in pitch (±12_), roll (+8),

yaw (+30°), vertical translation (h/D = .5 to 1.5)and horizontal translational within a five foot
diameter circle, l_nemodel could be restrained

in yaw and in vertical and horizontal translation|"

_ bF tensioning snubber cables_ The test rig is

shown in Figure IV-4.

Three "pilots" were used to coL1trol the model.Pilot A controlled vertical height and roll,
Pilot B controlled pitch, and Pilot C controlled

_K T /aw. The dc servo feedback control system dis-
, _ cussed in Section IIIC was used for this portion

of the test. The model pilots were stationed at i

i the most convenient azimuth with respect to the
"- pilots control (i.e., the roll and yaw piio+s were

behind the model and the pitch pilot to the side). _-
%
'_" I B. Semi-Free-Fli_ht, Rod Mount Test

-_ The model _as moun_ed on a vertical rod and was free in

i pitch (-12_ to +I0_), roll (+6 ° _ o

), yaw (generally -15 ) and
vertical translation (-+18 inches). The model control system
was the same as for the Phase II hover test.

I Realistic "flight" data was obtained at each level flighttrim point by flying the model clear of the vertical
restraint limits and by nulliug the horizontal drag on

_/" I the rod to zero, such that t_ust equalled drag. C!in,_,
I

_ I 301-099-002 IV-2
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force on the rod to the value of thrust or drag required to

j simulate the gravity component acting parallel to the flightpath. At .=elected data points the model was disturbed in
' pitch and yaw, separately, to obtain frequenc_ and damping

data

i. I
2

Data was obtained in helicopte:', conversion and auto-
_: rotative flight to evaluate aircraft c,haracteristies in

l the performance, dynamics, stability and control areas.' Testing covered forward flight from hover to i00 knots
,': full-scale at mast angles of 90 degrees (Figure IV-5),

I 75 degrees (Figure IV-6), 60 degrees (Figure IV-7), and 30
_ degrees (Figure IV-8). Sid:ward flight testing with a

mast angle of 90 degrees was investigated from hover to 30
knots (Figure IV~9). Rearward flight was tested from

_%4_"[ hover to 35 knots (Figure IV i0) at yaw angles up to 45
• -_ ,- degrees. IGE testing was a,_ h/D = .5 to .75 from 16 to

.,R _ 60 knots using the moving belt ground plane (Figure IV-II)

_" i_.. C. Stink Mount Test

The model was mounted on a sting support system with aninternal, six component strain gage balance to measure force
• and moment data. Fuselage pitch attitude was generally

varied from -18 to +20 degrees and yaw ang-le varied _com

l" -2 to +20 degrees. Only forward flight was .:nvestigated.

Control position determined at the trira poi:Lts during the
'_ I" rod test were used to set: fuselage att{tude, rotor control

l positions and elevator position. Static stability data
* were obtained during pitch and yaw sweeps from tile trim

condition. Control settings were held constant during
| the sweeps. Horizontal stabilizer incidence was varied&

to obtain stabilizer effectiveness and elevator sweeps
were nmde for elevator effectiveness. Tests were also

l conducted with the empennage and/or the rotors removed >"(Figures IV-12 and IV-13).

:.. • A tuft grid (3 ft x 4 ft) was mounted on the sting and placed
I directly behind the empennage (Figure IV-14) to visually i'.

---_, determine flow patterns in the vicinity of tile empennage
during low speed helicopter flight (airspeed from 16 tc

I _0 knots). Photographs were taken with the rotors stopped
and at trimmed level flight conditions for yaw angle of 0
and I0 degrees. "

| ,_
°..

I ,
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D. Data Reduction

Co_L=_I_,," for Re_m.olds number" effects must be made to make
the model data representative of the full-scale aircraft char-
acteristics. Trends and rotor wake effects on the airframe

I are believed representative of w_at might be expected onthe full-scale aircraft. Rotor and airframe aerodynamic
pauameters used in the correlation study have been modified

I to account for the model Reynolds numbers. Reynolds numberduring the test ranged from 80,000 to 500,000 referenced
to the wing chord of 1.045 feet. Airspeed used in this

report is the equivalent full-scale airspeed. Vortexgenerators were placed on the wing quarter-chord to better _
simulate full scale lift c_mracteristics at high angles of
attack. The data reference center for all data obtained

t during the sting test is stationline 60.0, waterline 16.7": and buttline 0.0 of the model This corresponds to an
equivalent full scale stationline 300.0 and waterline 83.5.

Center of gravity positions tested during the rod test wereequivalent to an aft cg for mast angles of 90 and 75 degrees.
As the nacelles were tilted forward the weight of the model;

m rotor gear box caused a forward shlft in cg, more t,hmn for

' l the full scale aircraft. This resulted in mast angles 60
and 30 degrees being tested at forward cg. Center of gravity
locations for the rod test at the mast angles tested are as

! _ follows :
|

.Mast F,Iselage* Waterline

i I _ Station
90 60.0 16.7

_ _ 75 59.4 16.6
| 60 59.0 16.5

30 58.2 16.2 *Model Scale i

I Force and moment data obtained during the sting test was t_measured on the wind tunnel six-component internal ba]ance
Aeron .... csand data reduction was by a Vought _,,*_ Wind Tunnel

data reduction program Dynamic and static model data i _,..
(control position, rotor parameters, and empennage lift) -
obtained during all phases of testing were recorded on _
magnetic tape and three oscillographs. Calibration of all

I strain gages were completed prior to testing with additionalcalibration made frequently during the tests. Magnetic _"" _':
tape data was put :_'Ldigitized form at Bell Helicopter's

I Data Reduction Center. Comparisons and verification havebeen made with hand-reduced data from the oscillographs.
The force and moment sign convention used for the rotor and ....

i airframe is shown in Figure IV-15.

I '
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_,:! |_ Figure IV-l. Roll Test Rig Schematic. :
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Figure IV-2. Hover Test, Wing Fairings On.
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i Figure IV-7. Rod Tust, Mast 60 Degrees.

'!

!
i Figure IV-8. Rod Test, Mast 30 Degrees.

I
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I
"" Figure IV-10. Rod Test, Rearwacd Flight

Mast 90 Degrees.
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. Figure IV-13. Sting Test, Mast 60 Degrees ---

Rotors-Off.
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I
_! A. Hover Test

[

h_0 I. Roll Static Stability

_ i The model was tested at h/D ratios of 0.5, 0.75, and

I 1.0 The moment required to hold the model at a g_ven
_ roll angle was measured first with the rotors stopped

and then with the rotors turning and at Ig thrust.

I The difference between the recorded moments is the con-tribution of the rotor wake-wing-ground aerodynamic
interference. Data recorded in terms of weight at the

I wing tip required to maintain a given roll angle isgiven in Figure V-I for h/D = 0.50. At h/D = 0.5 the
roll moment is stabilizing. Figure V-2 shows the
weight versus roll angle for h/D = 1.0 where the roll

I moment is Tests also made with the
destabilizing. were

wing aerodynamic fairings removed.

I Figure V-3 summarizes the roll static stability dataAs indicated, the model was found to ha_e positive roll
stability at touchdown, h/D = 0.50. Above an h/D = 0.54

I the model showed negative roll stability which was lin-ear with roll angle, over __6degrees. The maximum
instability was found to occur at h/D = 0.85. T_ _ full-
scale control input required to trim this instability

I was found to be 0.051 inches of lateral stick degree
per

of roll at an equivalent full-scale gross weight of
8,250 pounds. The lateral _ontrol requirement is ex-

I pected to increase linearly with the rotor downwash_-_ dynamic pressure. Thus at the maximum VTOL gross weight
" of the Model 301 (15,000 pounds) the m_imum lateral I,
., • control requirement is predicted to be 0.C93 inches of

$ I stick per degree of roll. For a _en-degree wing drop
_ in-ground-effect the ]ateral stick for trim would be

0.93 inches. Maximum lateral stick travel available is _,.

I -+4.8 inches. .

2. Performance

_ I The model was tested wizh wing panels on and off, at _°

I

'_ h/D ratios from 0.5 through 1.0. The model had vertical
_+4°freedom, roll freedom and -+20° yaw freedom. Pitch

I freedom was out. was
locked The model counterbalanced

_ by weights so that hover performance coald be investi- . ..
gated at net-thrust values of 50 pounds through i00

pounds (6250 pounds throug:_ 12,500 pounds full-scale).
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i"2(;_ 2. (Continued)

:'_ I The optimum flap setting to minimize win# download v:_
I investigated at h/D = 1.0. The baseline data point :,n_

the model hoveri__-_at a net tilrU._Lof 75 po_nds (9375

I pounds full.-scalt ,_ fl_ps_aileron_ at zero settin'z_Resetting the flaps ailerons to a5 25'. 60 a5" ,Lnd
75/_5" showed in eacI, CrlSe an increase el (:.()uerccnt

'_ in net thrust corlpared t_ the baseline case. A settin_

I of 75/75 ° showed only a _.7 percent _o:np_red to
incre:_se

the baseline case. The 75/_5 _ settin_ was sc.,.ected tot
;_ further performance testing since it was apparently

I near optimum. This setting was also used for the roll
_ stability testing. The wing panels were also removedto determine the difference in power required. (The
_ m exposed wing spar is a rectangular section so wing down-

| load was not completely eliminatel.) Results at h/D =
1.0 are shown in coefficient form in Figure V-_;.

I The model rotor hovering performance was predicted by

g correcting the full scale blade aerodynamic characteristics
for Reynolds number and Mach number effects. The blade

I profile drag coefficient at zero lift was increased andthe section lift curve slope and maximum lift decreased.
The computed model performance is compared to ful] scale

i and to the model data in Figure V-_. The calculated modelerformance compares reasonably well with the performance

I measured with the wing aerodynamic fairings removed, which .

approximates a zero download/upload condition. The model
power coefficient is calculated to be about 12 percent
higher than the full scale power coefficlent at the same
weight coefficient.

"'v Model performance data at h/D = 0.75 and 0.50 are shown
,. in Figures V-5 and V-6.

"_ m 3. wing Download ;:

;'_._j The wing download was measured by comparing wing-fairings

I on and off data. At thrust/sigma prime = 8_.5 pounds _-..:. (10,600 pounds full-scale) the wing-panel download was
ii._ percent of thrust at h/D = 1.0, as shown in Figure ',

| :
V-7. This is higher than the 7 percent predicted for full-

-. scale and it is believed that a Reynolds number effect _.
_. may explain the difference. Hoerner shows that the drag

of cross-sectional shapes with _ounded edges and flat

are strongly dependent on Reynolds as shown
sides number

in Figure V-8. The sections tested by Hoerner are con-
sidered to be comparable to a wing, with fla_s deflected, _-_
at an angle of attack of -90 degrees. The drag coeffi-
cients of Figure V-8 drop by at least 50 percent as Reynolds
number is increased from that of the model (2 x 105 ) to "-
that of full-scale (2 x 106). Thus the mode. download of
ii.4 percent thrust can be predicted to reduce to 5-7

percent of full-scale thrust.

301-099-002 V-2
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5' 3. (Continued)
_i_ I A'_" _'_',.'n. nn _";o"'_'(_ V 7 r'P H_e r'p._ t " s,_ s........... o..... - a .... ul.s of a recent to, t

. of the one-tenth-scale Bell CIO0 FIB tilt rotor mod_,[.
'< i This test was conducted at Reynolds numbers around

4 X 105 and showed a wing download under 7 percent.This Reynolds number is closL to the "'draF-bucket'" of

I Figure V-8 and may be more representative of fuLL-scalevalues. The reduction in power required in-eround-effect
is shown in Figure V-9. The reductiol, is 12 percent "_.t
high model weights, increasing to over 19 Derc'ent dt low

I model weights._ "

_ The vertical "spring" in ground effect is sho_n in Fig- :
-_ _ ure V-IO. Collective pitch was not instrumented on this

¢_ _ test so the thrust change is shown at constant torque.

, _" l_ane_erotiCol o_pring_ isdViurtZll _ the htme _tihtehn_itng-

_! thrust increased by 19 percent as h/D reduced from 1.0

P . " - .g , ,
I

to 0.5.

_i_, _. _. Controllability in Semi-Free Fli_ht

_'i The model was tested in a transitional hover test rig
I (h/D = 1.0) to investigate free flight stability and con-

trol response. Control of the model was found to be so ,
difficult that most of the test period was spent developing

I piloting skill. The pilot's skil] level at the end of the

I test was much higher than at the beginnin_ but wasperiod
still less than that required for precision control of
the model. Hover over a spot could generally be achie_

I until a wind gust or an input caused a roll disturbance •The model then translated rapidly unt_l the transitiona_

_ limits were reached. The tendency was aggrevated by the _
"_ il horizontal translational restraint system causing a
" II rolling moment with horizontal displacement.

_" !'i

' Yaw control proved to be easy once the pilo, r¢,:ognized

I the need to lead rate in order to o_l the desired
Few stop

heading. Pitch _ontrol was not difficult except where
_., roll and lateral translation motion became large, then

_"" ,,I pitch could not be cont_olled. _:,!_

I" *6 The wing. panels were removed from the model to see if

I rotcr-w_ng aerodynamic interference contributed to theroll-lateral translation control problem. However, no
significant change was observed. The model was also
flov_ at h/D = 0.75. At that height it was not con-

I trollable. When the snubber was released, the modelwould translate laterally so quickly that the pilots -_.
did not have time to regain control over the model

"' I before it reached the stops.

301-099-002 V-3
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4. (Continued)

|
It was apparent from the hover contro _'_'" " test _h_

/_ _ given sufficient time to develop piloting proficiency.

m the model could be successfully hovered. However, this
task was felt to be of low priority and was terminated

_ in order to prepare for the wind tunnel tests.
I B. Semi-Free Fli_ht r Rod Mount Test

_! I Tests on the vertical rod mount covered the mast angle rangefrom 95 degrees to 30 degrees and airspeeds from hover to

i i00 knots. (Airspeeds and weiKhts Kiven in this re-
gross

port are equivalent full scale values. All other para-
.--_" _ meters shown are in model scale.) Tests were oerformed to

•:_ l determine control positions for trimmed flight and to eva!u-
ate stability and flying qualities about trim.

_ i_i-

t Airframe and rotor parameters monitored during the test
, included fuselage pitch attitude, elevator position, empen-

_i_t _ nage lift, cyclic position, collective setting at 0.75
radius of the blade, rotor torque, and rotor flapping.
Rotor loads and vibration levels were also monitored to

_', prevent exceeding limits. There is some scatter in the

test data which must be attributed to the model not being in _
trim flight. A trimmed level flight condition on the rod i_
was obtalned when the thrust/drag indicator on the rod indi-

cated zero. Accuracy of the indicator and its reading, and ;the low dynamic pressure at the low airspeeds te_ted made
it difficult to determine the precise trim point. Any off-

trim thrust or drag is equivalent to flying in a climb or i_

I descent. Also, small roll and angles were difficult
yaw

_. to detect. Every attempt was made to maintain correct
rigging between cyclic and elevator through the test, but _m so0edata points were taken with improper elevator settings :,:.- . ,f,

. _ Combinations of these factors resulted in off-trim condi-

:_f, tions for some recorded test points. Therefore, general
....' trends should receive more emphasis than s_udying each !

individual data point.
"_+_ %

;_ Comparison between test data and parameters calculated using
"_'_'_ ! BHC computer program C81 is shown in each figure. Airframe il
_ - and rotor aerodynamic inputs to program C81 were corrected

"_ to reflect Reynolds number effects. Reynolds number effects

are significant and must be kept in mind when using the testdata to predict full-scale characteristics. The recommended
approach is to validate the computer program using test data °

"_'_ ) and then scale up to predict full-scale characteristics using
, aerodynamic data appropriate to the full-scale Reynolds

numbe rs.

_,_ 30].-099-002 V-_
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I I. Trimmed Flight Conditions

I a. Mast ankle 90 °

(i) Level f li;_ht

Figure V-il shows the model parameters for

I trimmed level flight versus airspeed. Vortex
_ generators have been used during low Reynolds

number scaled model testing of the Model 300

i to obtain lift characteristics that approxi-mate full scale 12. As shown in Figure V-II,
vortex generators do not have a significant
effect on the trim parameters. The largest

.- _ difference occurred in the rotor torque. In
i analyzing the data for points 80 through

89 with the vortex generators off, it was
/ -

"-- II' noted that a small amount of drag was in--
_ _ dicated on the rod which is equivalent to '

having a rate of descent. This may explain

",_ _ why the vortex generators off data required

%

"'_ _ less power.

:_ Cyclic position and empennage lift are a pri-
_:. _- mary indicator of rotor wake effects on the ,_

| horizontal stabilizer. The shallow stick _

' gradient between 20 and 50 knots is the result ;

I of the rotor wake having the net effect of an ._
_ upwash; positive empennage lift tends to con-

firm that the rotor wake acts as an upwash. _

i As sDeed increases above 50 knots wing down-
wash becomes more effective, providing a stable

stick gradient with airspeed. The shallow _
gradient between 20 and 50 knots is within the Im"

_ II MIL-SPEC requirements and should not present_ a problem. During recent simulator studies
_,!_ of the Model 301 the shallow gradient did not '
_ • present a problem for the pilots. _'_

I
_,- Calculated rotor torque (power) was found to

i i be in very good agreement with test. Torque

readings remained consistant throughout the
test and were later used as a trim indicator

during the sting test.

In general, calculated empennage lift is in
close agreement with test data although the ..

_'_ _ empennage lift data had the largest amount of
scatter of all the parameters measured. Several

_, items that affect empennage lift which contri- -.
bute to this variation are fuselage pitch atti-
tude, elevator position, and rotor power. The

ii_" 301-099-002 V-5 .
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trend generally remaz'ned the same and shows

, a variation initiallyflapping from agooddOWnlOadagreementtOan

i upload. As speed increases, the upwash from
the rotor decreases an# [he downwash from the
wing increases. Another reason for the dif-

ference between theory and test is the present

I inadequate representation of the rotor wake inprogram C81. This will be discussed later in
Section Vl.

I Rotor flapping was found to be up to 4n percent
higher than calculated. This difference is
primarily due to lateral flapping. Measured

I fore-and-aft is in with
that estimated. By refining the original theory,
analysis shows that better agreement can be made

I with the _easured flapping as discussed indetail in Section VI Alt_ough flapping was

higher than calculated, flapping does not appear .,

I to restrict any flight condition.
During the initial port_on of the rod test the
roll degree of freedom was locked out to reduce

I the model pilots work load and to allow a
pre-

liminary evaluation of flying qualities. On_
the model was checked out and found to be easy _:

I to control the roll restraint was removed. No :_significant difference was observed in trim _
characteristics between having the roll fixed }

i or free. :
?

(2) Effect of Horizontal Stabilizer Incidence on
level Flight Trim

Figure V-12 illustrates the effect of horizontal
_ incidence (+4 °) on level flight trim parameters.
:_;;_.| The trends and agreement between theory and

| test data are similar to those discussed above.
$_ The main effect of changing stabilizer incidence
_ �isin the longitudinal cyclic stick trim posi-

ii/: _ i
_,=$ _ lion Positive incidence (leading edge up) "/:-, tends to reduce the gradient with airspeed
" between 20 and 60 knots. For the four degre_

tested, the cyclic stick position showed a
stick reversal. With negative incidence, the

." cyclic stick gradient with airspeed improves. --

: Changing incidence in either direction has ..__
advantages and disadvantages. Positive inci-

, . dence produces a stick reversal between 20 and

k

, 301-099-002 V-6
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_,_ (2) (Continued)
I 60 knots, but does .not require a _ much forward

stick at high speeds. High speed helicopter

I would then be limited by power instead of sticktravel. Positive incidence also tends to pitchI

the aircraft more nose down which would be

i undesirable from a pilot's point of view (fuse-lage angle of attack with +_ degrees _ncidence
is -15 degrees at i00 knots) and may also result
in increased blade loads. Negative incidence

I on the other hand, although steepening thestick gradient, requires more cyclic for high
speed helicopter flight and thereby restricts

I the speed in this mode.
(3) Effect of Gross Weight on Level FliEht Trim

mm
' • The effect of gross weight on level flight trim

parameters is shown in Figure _T-13. The para- i
meters which are signiticant!y affected by

I gross weight are collective pitch, masttorque, and blade flapping. Computed collec-
tive pitch and mast torque are in close agree- "_

I ment with test data. A significant differencewas again found in computed lateral flapping
due to the simplified math model used for the _;
induced velocity distribution. '_

(4) Effect of Wink Lift on Trim Parameters _:

I The aerodynamic fairings were removed from thewing spar to investigate the effect of wing
._- lift on the level flight trim parameters. Fig-

.,_]'_e"_I ure V-14 shows the trim parameters versus air-

',-_- I speed, _ith the fairings removed. Comparison

_-_ of the wing fairings off and fairings on data, !_i:

_; Figure V-ll, does not indicate a significant '_'_-_!_i_:. I influence. , :_,
_:_ Early in the test program wing aerodynamic

;_?:- _ interference was suspected to be one of the __?' " reasons for the higher than calculated lateral
flapping. However, flapping with the fairings
removed was the same as with the fairings on.

(5) Descent and Autorotation Trim Parameters

Rate of descent or climb was determined from

the magnitude of the model's drag or thrust ,.,,_..
_' on the vertical rods. The method is illustrated

_'" in Figure V-15. ,

•" 301-099-002 V-7
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(5) (Continued)|
_ Descent and autorotation trim parameters were

_i determined over a range of airspeed (50 to 90
i knots), for flap settings of 0 ° and 45 °

• , and

._, mast angles of 90 ° and 95 °. Descent and auto-rotation trim data is summarized _n Figure V-16.
Autorotation was achieved at an equivalent full-

er scale rate of descent of 4000 feet per minute
"_ at 80 knots airspeed. The calculated full-
_T scale autorotation rate of descent at 80 knots
_ • is 2400 feet per minute. Reynolds number
"_ _ effects are considered to be responsible for ,

this difference between the model and full-
.. scale rates of descent.

!
,, Airframe and rotor characteristics were corrected

to test Reynolds numbers and used to compute the •

I rate of descent. Reasonable agreement with re-
gard to fuselage attitude, rotor power and con-
trol positions was obtained for rates of descent

I up to about 2500 feet per minute• However, athigher rates of descent the calculated fuselage ,
attitude was signficantly higher than measured. _:_

i Investigation showed that the wing was notstalled in the computer program whereas during
the test tufts on the wing indicated flow over

the wing was separated at the higher rates of

I descent. The inputs to the program were modified :_-to reflect the model's wing stall characteristics,
including the wing downwash above stall Once _

• | this was done the calculated and measured rates

' _ of descent were in good agreement.

_' (6) Climb Trim Parameters

., Structural in_:erference limited the nose down :.

,-_" pitch attitude with respect to the rod to -10 ,.,'.,,"
_ | degrees. Consequently, very little data on

_ climb trim parameters was obtained for mast
_- angle 90 °. What data was obtained is presented

_ I with the static stability data in sec- ._.
i_ | tion V.B.2. " '

(7) Forward. Fli_ht I GE_ Sidewar d and Rearward

I oaz
- Tests were made in ground effect (IGE) at h/D = ---

I .75 and .50 with a moving ground plane and bound-
! ary layer suction. The moving ground plane was

operated at speeds corresponding to the tunnel's

301-099-002 V-8
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(7) (Continued)

I air ve!oc_ty. The test data for forward flight
shown in Figure V-17 indicates the model to have

l a more nose down fuselage pitch attitude IGEthan OGE. The cyclic stick position is more
aft than OGE indicating a significant upload on

l the horizontal stabilizer. Torque was lowerduring hover IGE, but was about the same as OGE
between 16 and 30 knots• More torque was re-
quired at 40 and 60 knots IGE than OGE.

I Sideward flight was accomplished at airspeeds
up to 30 knots. As shown in Figure V-18,

I approximately 4.6 degrees of differential cyclicpitch was required to hold heading at 30 knots.
This is higher than the design value of 4.0.

I However, the model did not have rudders, whichwill tend to relieve the differential cyclic
requirement. One significant factor observed
during sideward flight was the increase in •

I power required resulting from the tandem rotoreffect. (The trailing rotor is in the downwash
of the leading rotor and therefore has a higher

I induced power loss.)
Rearward flight was accomplished at speeds up
to 35 knots at both forward and aft cg positions.

I Figure V-19 shows the parameters versus
trim

airspeed. Eight degrees of aft cyclic was
required at 35 knots, forward cg. (Elevator

I settings were not set at the proper value for• the cyclic position because of a physical limit on

I up-elevator. The proper value would tend to

reduce the cyclic requlrement slightly.) Blade
• flapping at forward cg was high because of the
_', aft cyclic required to trim out the weight
_""_ moment.

_,:, b Mast an_le 75

I Figure V-Z0 shows the level flight trim parameters for _

| mast angle 75 degrees. Comparison between theory
" (081) and measured parameters is similar to chat

| discussed for mast angle 90 degrees.
!

_ The longitudinal cyclic gradient with airspeed shows
,_- a reversal between 30 knots and 60 knots that is more "-

I pronounced than the reversal at mast angle 90 degrees.
! The lateral flapping trend with airspeed is similar

to that for mast angle 90 degrees.
1
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b. (Continued)

I Sevel_al gross weights were tested at mast _n_le 75
degrees; trim positions are shown in Figure V-21.

n The most significant variation with gross weight wasin power and flapping.

i Figure V-22 shows the effect of flap setting on trimparameters. During runs at 75 degrees (and at 90
degrees) it was noticed that the tufts oll the flaps
indicated separation and spanwise flow. This was

I considered as a possible unrealistic representationof the wing wake. Vortex generators were added to
the wing at the flap hinge line, but did not change

I the appearance of the tufts. The flaps were thenraised to eliminate the separation. However, little
difference was noted in the trim attitude or cyclic
stick position, as is shown in Figure V-22.

: c. Mast angles 60° and 30°

n Figures v-23 and V-24 show trim parameters for mast
angle 60 degrees and 30 degrees respectively. Only _
a limited amount of data was taken at these mast

I angles since analysis and test (the XV-3) indicate _,the significant handling qualities problems are at

mast angle 90 and 75 degrees. ._

I In comparin_ computed and test for mast an%les of '_60 and 30 degrees, caution should be exercised in
using these as realistic trimmed flight conditions. _

I Incorrect cyclic/elevator _earing used for these !mast angles caused large differences in empennaqe
lift. Proper elevator settings at aft cyclic
positions were not obtained because of limits on up

I elevator deflections. In addition are the model scale
_ .... effects (low CL and low test airspeeds) as discussed

", max .,."-
_£_, earlier, which make these trim conditions unrepresenta- _-
_ tive of the full scale aircraft trim.

_i;, | 2. Static Stability Characteristics

_'-. a. Lon_itudina I __

Longitudinal static stability at mast angles 90 and
_ 75 degrees was investigated by trimming the model
• over a range of fuselage trim attitudes. Figures --
_ V-25 and V-26 show the trim parameters versus fuse-
: lage pitch attitude for mast angles 90 and 75 degrees
,_, respectively. These trim points correspond to
.... climbing or descending flight.

_ 301-099-002 V-10
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a. (Continued)

At mast angle 90 degrees the longitudinal cycl_c
stick position gradient with fuselage pitch attitude

I indicates positive static stability. However, atmast angle 75 degrees and 30 knots, the stick
gradient shows approximately neutral static sta-
bility. The model pilot found it very difficult to

trim the model in this condition. Positive staticstability was indicated at the higher speeds tested
for mast angle 75 degrees.

b. lateral directional

lateral directional static stability was investigatedf at mast angles 90 and 75 degrees by yawing the model
_ with differential cyclic and trimming roll and pitch

with differential collective and longitudinal cyclic

respectively. Figures V-27 and V-28 show the trim; parameters versus yaw angle for mast angles 90 and ,
75 degrees respectively.

l The differential cyclic required to maintain a given
yaw angle was essentially linear over the range of

I speed and yaw angle tested. There was a significant ,variation in the longitudinal cyclic required for
trim with yaw angle. This variation reflects the

change in upload to download on the horizontal ._

I stabilizer due to the rotor wake with yaw angle.

3. Dynamic Stability Characteristics

I At each trim point the model was disturbed in pitch and
_, yaw to obtaiL: dynamic stability data The frequency

_ I and damping of the pitching and yawing modes were i _

extracted from t,_e time history of the model response.

_ Table V-I compares calculated frequency and damping ,with that measu_'ed in the test. In general, agreement _J

frequency and damping are not given because the model

I response was so sluggish that the frequency and damping il...;,.
could not be accurately calculated from the time history.

4. Controllability

The evaluation given in Table V-2 with regard to model
controllability on the rod mount was recorded by the _-_-

I model pilots: (all comments pertain to the II,000

pound gross weight configuration). _--_

301-099-002 V-If
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5. Aeroelastic Stability_ Oscillatory Loa.ds,.and Vibration

i l a. Aeroelastic stability

l The aeroelastic stability cb_._acturistlcs were
i investigated by exciting the coupled rotor-pylon-wing modes and observing the decay of the motion.
i The model was excited by plucking wires attached

l to the left hand nacelle and the model
by bouncing

_- on the vertical restraint cable. The damping was
:_ monitored visually and on an oscillograph.

; Rotor-pylon-wing motions were well damped with no
_: evidence of instability at any conversion angle or

I speed. It was not possible _u accurately reduce

;, I the damping using conventional decay analysis because
the steady-state forced vibration partially obscured ._
the decay. Since aeroelastlc stability has not been

l identified as a problem in helicopter and conversionmode, no attempt was made to reduce the data using
other methods.

-il" b. Oscillatory loads

i Rotor and control system oscillatory loads were .,

monitored during the test to avoid exceeding limits. $
Figure V-29 shows typical waveforms of the rotor
loads and flapping. Loads were pre "ominantly one-

per-rev at all mast angles and air=peeds One-per- '_
•

rev loads were also predominant in the 25-foot prop- _"

rotor test in the 40- by 80-foot wind tunnel.

%

7

;_ Figures V-30 through 32 show measured beamwise and ii
._ chordwise bending at blade station 52.5 snd the

_-_ pitch link load versus airspeed, for the four con- _ _
_ I version angles tested. Blade and control !oads _
,,:. were well below the equivalent full scale endurance
'_, limit and show a reduction in magnitude as the _.k
!_! _ narelles convert from helicopter to airplane mode. _

¢ i Figure V-33 shows the variation in blade and con- _- '
trol loads with gross weight at constant airspeed.

l The load trend does not indicate the occurrence of :stall flutter o _" other aeroelastic instability. _,:_

It should he noted that blade and control loads are

l well below the I, _ds predicted for the Model 301 ]7 .,. This is caused 'f (I) the model rotor not being
.... Math scaled when tested in air (scale f_etor is _-- --

I 0.447) so that drag rise at high lift coefficlent_,is not correct, and (2) the model blade first iu_,],_e
natural frequency ratio is slightly higher than _"_--
that for the full-scale blade.

I ,
_. _ 301-099-002 V-12

1973022218-080



I
_I_ BELl- l,Jse or d,sclo_ure o_ rJata un this p_g_ ,s

HEUC_OP"I"ER coMP_u_v I _{;bled to the rP%trldloN on the hlte page

I
c. Airframe vibration

I Vibration levels were measured at seven locations:

three on the right hand nacelle, one on the left

I hand nacelle, one on each of the vertical fins andone at the aircraft center of gravity. The nacelle
accelerometers could be moved to monitor vibrations
in either the fore-and-aft or the lateral sense.

I The vertical fin accelerometers measured in thefore-and-aft sense and the accelerometer at the

aircraft center of gravity measured in the vertical

I sense.

Figure V-34 shows the frequency content of the v ibra-

I tion of four stations. The dominant frequency isone-per-rev (21 cps) and is caused by rotor out of
balance and/or out of track. The operating toler-
ance on out of balance and out of track is much

I foz the model than full-scale. Hence, thegreater
one-per-rev vibration is not considered representa-
tive of full-scale.

! •The two-per-rev vibration is caused by the Hooke's
joint effects of the rotor gimbals in combination

I with rotor flapping. With a gimballed rotor, flap-ping induces a two-per-rev torque and moment at the
hub which are proportional to the square of the
flapping angle. Figure V-35 shows that the maximum
two-per-rev vibration occurs at approximately 40

knots which is the airspeed at which flapping was ,__
the maximum. _

The three-per-rev vibration results from two-per-
_-

rev and three-per-rev airloads. 13%e three-per-rev ,1

I vibration level, shown in Figure V-36 has a peak , _
near 40 knots where the rotor near wake has the {"l_

mos_ significant effect and then begins to increase
again about 80 knots as the rotor advance ratio be- I, ,,.-

I comes signfiicant. The variation in vibration level i _;"% ,with conversion angle is shown in Figures V-37 and
V-38 for two-per-rev and three-per-rev respectively.

I In general the level of vibration decreases as the i£:._,J_;l_"• ._nacelles are converted forward.

Both the two-per-rev and three-per-rev vibration
_1 I are representative of the full-scale aircraft. 'lne

levels are within design limits. Analysis of the
'_, airframe oscillatory load level corresponding co the "------

I measured vibration levels, indicate the loads are low
with respect to structural allowables. ____.._.

• 301-099-002 V-13

1973022218-081



". ' _ i

_;_,.; I-.IELI_--_E)P'TER subpect to Ihe r_,'.,lrw hr.1 .fl the Idle paqe I

Empennage v_a..at_on levels were monitored to deter-
mine if the rotor wake excited empennage natural

i f_equencies. While some natural frequency excita-tion was evident it was very low in mag ,tude. The
dominant vibration frequency was one-per-rev but
as noted earlier _he one--per-rev level is not repre-

I sentative of ful]-scale.

!', C. Stin_ Mount Test

i, The sting mount test covered the same of mast angle
ranges

and airspeed covered in the rod mount test. Control posi-
_ i tions and pitch attitude were based on the trim values

"" _ I determined during the rod mount te'st. The strain gage

i balance was used to verify that lift and pitching moment

,__,_ were in tcim; when indicated, collective pitch and/or

longitudinal cyclic was adjusted to improve the trim condi-
tl, ._. In some cases climb and descent trim were estimated

by extrapolating trim data from the rod test since only a

.- I limited amount of data for these conditions had been obtained.

_.;.: A tuft gr_d was placed in the vicinity of the empennage in
order to observe the rotor wake. Photographs of the tuft

I grid patterns are given Appendix C. analysis
in An of the

rotor wake observations is presented in Section VI-A.

I I. Comparison of Airframe .Characteristics with PreviousTe st Data

I At the low Reynolds number tested, the stall character-istics are significantly different than estimated for
/ the full scale aircraft. Stall occurred at 12 degrees i

which is 4 degrees lower than chat obtained on the force _N

I model at a higher Reynolds n_nber. The maximum liftcoefficient for the aeroelastic model was 0.44 less

than the force model. A comparison of the aeroelastic 4

I model with the force model showing the effect of Reynolds

I number is presented in Figure V-39. _he reduction in

maximum lift coefficient had a significant effect on
simulation of autorotation as discussed in Section V-B.

There was very little difference in the lateral-direc- _"
tional characteristics as shown in Figur-_ V-40.

i 2. Comparison of Rod and Scin_ Mount Trim Parametecs

Figure V-41 shows comparison of typical trimmed level
flight attitudes and _ontrol positions used during the
rod and sting tests. Fuselage pitch attitudr, cyclic -

position, and torque settings used during t,h sting

i
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_;i' 2. (Continued)

i_ i test were preset based on trim settings determined cl_ir_ng

_": the rod test. During the sting test torque was found to
be the quickest and best indicator of the model being in "
trim. Higher collective pitch settings were required
during the sting test than the rod test for the same

'_ _ torque readings. Checks made of model lift on the tunrel

f • balance verified the model to be in trim and t'_at the

torque to be indicating properly. A difference il, collec-

E

tive pitch calibration is suspected to be the reason,

i _ for the difference between the tests. Collective pitch
,, • settings obtained during the sting test are in better

agreement with the theoretically computed values. $

i Empennage lift and rotor flapping, the two independent• , parameters in the two tests, are in close agreement.

3. Static Stability Characteristics

I Force and moment data was obtained for rotors and/or

empennage on and off to evaluate rote.r wake effects.

I Pitch and yaw sweeps weze made about the _rim attitudefor level, climb, and descent flight configurations.
Lift, pitching moment, and y_wing moment data are

i summarized in this sectio_ lot level flight from 40 toi00 knots. A complete set of force and moment data
at lower airspeeds, and climb and descent are given in
Appendix B.

I a. llft coefficient, ma_t angle 90 degrees

I A compazison between rotors-off and rotors-on lift.. coefficients at _0, 60, and 80 knots is shown in
_._ Figures V-42, V-43, an(, V-_4. (Lift coefficient
_i is based on wing area and freestream dynamic pres- _'_

_'1' I sure )
II

b. Pitchin_ moment coefficient_ mast 90 de_rees _
| ....

,<, Pitching moment characteristics fo__ the same sp_ed _ ,
f_._ range are shown in Figures V-L'.5,V-_6, and V-47.

_i_ I The change in pitching momenL with angle of attack :I
.%

(Cm_ ), rotors-off, does not change with airspeed. _.
Wing downwash and pitching mcment at zero pJ tch

_ : (Cm_ ), empennage off, changes due to Reynolds= 0

number effec _ These effects combine causing the
shift in C , empennage on. At the low Reynolds

-- m

_ = 0

numbers, the lift curve slope of the horizontal tail "-

_,, 301-099-002 V-15
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_CL ) is reduced and _'_uL.s _L, _u_r ...... __-
_ _H

_"_ I
,_" tudinal stability (Cm ) than for the full scale

-- * airframe. The comparison of the aeroelastic model

I with the force model, given in Figure V-39 shows the_ effect of Reynolds number on C . 2he break _n

m_,_- t3f

the pit-hing moment curve at 12 degrees is due to

I wingstall.
The effect of the rotor wake on the Ditchin_ mome_t

I is apparent wh(n the rotors-on and rotors-off pitch-_: ing moments are compared. At _0 knots the model
is unstable for negative ang!_ of attack and stable

_-" I rt positive angles. At 60 and _3 knots the model

, _ ,.I is stable on eithe_ side of trim. The change in

pitching moment due to the empennage indicates that
the wake changes from a downwash with rotors-off to

I,." I an upwash with rotors-on (see Section VI for a more
I detailed discussion of rotor wake effect: %.

The pitching moment characteristics may be e×plainedas follows: at '10 k,ots and at negative angles of
attack, the rate of change of the upwash at the hor-

i izontal stabilizer with angle of attack (d_T/d _) isgreater than 1.0, _,-hichcancels the stabilizing
effect of the horizontal stabilizer. At positive

I an_le of attack, dET,/d_ is nearly zero so the slopeof the pitching moment is about the same as rotors-

_. off. At 60 and 80 knot_, @_T/d_ is lower than

_'_ (rotors-cff wing downwash) making the air-

c_aft more stable rotors-on than rotors-off. The

•" unstable bump in the pitching moment coefficient

_ I around 8 degrees angle of attack at 60 and 80 knots _ _,"
_ is not un6er_tood. However, it may be due to the ;

• _'. rotor vortices impinging on _he horizontal stabilizer
"'" and causing the flow to separate.

I i:,,,
-_ c. Yawin_ moment coefficient , mast 90 degrees %

Directio_,al stabi1_ity with rotors-on and -off at _0,60, and 80 kncts is shown in Figures V-_9 through
V-50 for up to 20 degrees of yaw. Again, the rotor .-*_,

! wake effect on the empennage i_ significant at _0

_ l knots and decreases with increasing airspeed.

i

"_ _01-099-o002 V-16
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_ c. (Continued)

__< Very little change in rotors-off directional sta-
bility is noted with airspeed for eitI:er e_Dennage-

_ I off or on. A change in slope occurs at abaut 6_ degrees yaw whicn appears to be a Reynolds number
t_- effect on the vertical fins.

At _0 knots, rotors-on, directional stability is
;_ neutral for yaw angles less than 4 degrees and in-
:_ creases in stability between 4 and 20 degrees yaw.

I As speed increases, stability improvec, between -+4_r _d decreases between 4 and 20 degrees. For the air-

speeds tested, directional stability above 12 degrees
I yaw is greater rotors-on than rotors-off.

d. Lift coefficient_ Mast annie 75 de_rees

" 1 Lift characteristics at mast angle 75 degreea are
very similar to those for mast angle 90 de_rees and
are shown in Figure_ V-51, V-52, and V-53 respec-

I tively.

e. Pitchin_ Moment Cor.!ficient_ Mast an_l e 75 de re_

I Pitching moment characteristics are chown in Figures
V-54- _; =_• --_a, and V-56. Rotors-off characteristics
with airspeed and angle of attack are si_,ilar to

I mast angle 90
degrees.

_.:, At 40 knots, rotors-on, e_penna_e-on, the aircraft
I pitchin_ moment shows a stable slope below trim,_: changing to an unstable slope above !-rim and then !

i.. returns to a stable slope aftez' wing stall. The '

_f • pitch up which is also present at 60 knots, makes
< I the aircraft unstable about level flight trim. The
-_. pitch up tendency disappears at 80 knots, when the ' :

_,:, pitching moment becomes slightly stable. This trend i,'"
• I is differen_ that at mast angle 90 de_rees. At mast _-

U angle 90 degrees, rotors-on s_ab_lity wa_ better _
:F than rotors off (except at 40 l, no::_). At mast angle

attack and airspeed, and i_ I_ so stable at the
higher a_rspeed.

The unstable region in the pitching moment curve
also exists at mast angle 90 degrees, but does not

.. occur near the level flight trim attitude, level -

flight trim for mast angle 90 degrees ranges from0 to -8 degrees, several degrees below the pitch- ___
up, waereas trim for mast 75 degrees is at angles

.... _ of attack ranging from 8 to 2 degrees, right in the

i 301-099-002 V-17
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e. (Continued)

middle of the pitch up. Referring to climb and
descent data presented in Appendix B, it is seen

E that the pitch up occurs near these trim attitudes_" and would also have an effect on stability for these
configurations. This change in stability with pitch

attitude is caused by the relationship of the rotorstip vortices to the horizontal stabilizer. At small
and negative angles of attac_ the horizontal sta-
bilizer moves closer to the cote of the _ortices°

s The rate of change of the tail angle of attack with

change in pitch attitude (O_H/O_ F) is generally

less this region because of the strength of the
in

rotor wake relative to the freestream. At positive
angles of attack the horizontal stabilizer moves
farther away from the vortices. In this region

the total wake changes laore rapidly with angle ofattack, in some cases at nearly the same rate as

the chan_e aircraft pitch attitude eliminating the

U stabilizlng contribution of the horizontal stabilizer"i (O_H/a_F = 0). It should be noted that this pitch up

is dependent on the relationship of mast angle and •
_, _ airspeed and will not occur at the same angle of _
-_ _ attac_ for all cases. The strength of the rotor wake, i
__ wing wake, and freestream must all be included. As i

I_ speed increases this trend continues but the rotor ,
wake weakens until the main influence on stability :,
is the wing downwash. The rotors give an upwash in
the 40 to 80 knots speed range.

,_-' f. Yawing Moment Coefficient, Mast an_le 75 degrees $_
2
_ |_ Directional stability for mast angle 75 degrees at _=

|i_ 40, 60, and EO knots is shown in Figures V-57, V-58, [
and V-59 respectively. Rotors-off, the yawing moment

; is very similar in magnitude and characteristics as _ ",

I for mast angle 90 degrees. _'_i
Rotors-on tests showed increased directional stability _

I at yaw angles greater than six degrees, As airspeed _increases directional stability rotors-ou reduces at "_,_.,
4, high yaw angles to nearly the level of rotors-off.

i At 40 knots, rotors-on, the rotor wake effects aremore severe than for mast angle 90 degrees. Between
yaw angles of -+2.0 degrees the model was directionally
unstable. As airspeed increased the model becomes "-- -

I more stable.

! ,
30 1-099-002 V-18
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I
g. Lift Coetficient, Mast Angles 60 and 30 dc_ree_

I Lift coefficients at SO and I00 knots for mast

angles of 60 and 30 degrees are sho_.anin Figures

I V-60 and V-61.
h. Pitchin_ Morn at Coefficient_ Mast An_le 60 and 30

i degrees
Pitching moment coefficient versus angle of attack
for the same speeds are shown in Figures V-62 and

l V-63. The rotors-off pitching moment is similar tothat at the other mast angles, rhe rotors-on pitch-
ing moment has a pitch up region at 80 knots, mast

60, as it did at _ast angles 90 .:nd 75 degrees atlower airspeeds. The pitch up does not occur at
i00 knots or at mast angle of 30 eegrees.

Rotors-on, empennage off data, shows v_ry littlz
destabilizing effect due to the rotor. Empennage
on, the rotor wake effect is stabilizing in that

the r_,tors-on pitching moment is more stable tban :

I the rotors-off.
_ _ i. Yawing Moment Coefficient, .Mast angle 60 and 30 _

I deg, r ees " _=_

Directional stability for 80 and i00 knots is very ;_
I good as showr Figures V-6_ and V-65 Rotor wake

in

effects on the vertical fins' aerodynamics are still
indicated to be destabilizing but do not reduce the

l directional stability between *__degrees as much as -:'at mast angles 90 and 75 degrees. Directional sta- ,,

_" bility is still increased, rotors-on, at yaw angles
_! greater than _ degrees•

|

": | i

I

i 301-099-002 V-t9

1973022218-087



"%,

;"' HELICOPTER' cot'_P,_N'v ",:."je(' L, ", ,_;t, (I ..... :, , I '_. p.,,_,
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i TABLE V-l. CORRELATION BETWEEN CALCLU_ATED AND MEASURED

I DYNAMIC STA31LITY CHARACTERISTICS

!
Pitch

I Mast Airs peed Measured I Ca iculat ed I
Angle Knot s Period/Damping Period/DampinB

¢ 1

90 ° 80 3.6 sec/_ - .t4l 3.2 sec/_ = .66 )"_,._ (3.62 sec/g = .al ..

"-f C_N I 90 2.7 sec/_ = .45 2.98 sec/_ = .6t4

I

100 2.3t4 sec/_ = .35 2.7/_ = .62

I 75 ° 60 3.42 sec/_ = .33 U,.4 sec/_ - .67

_ 60 ° -- (Data At This Mast_

b

"_ " I kAngle Not Usable /

2_; . 30 ° i00 3.03 sec/_ = ._2 2.0 sec/g = ._7

, ' _ Yaw
Mast Airs Deed Measured Calcula te_

Angle Knot s Peri od/Dsmping Per iod/Damping

!_ "I 90 ° i00 5.6 sec/_ = .190 _.6 sec/_ = .i_

i 75 ° i00 5.6 sec/_ = .].7 _.3 sec/_ = .17
60 _ 80 7.05 sec/_ = .25 5.6 sec/_ = .2_

•, 30 ° -- Data At This Has -_
|

, !
_ i. Full-scale equivalent

• I 2. Calculated used measured static derivatives and with
-_' dynamic derivatives corrected for Reynolds number

&

.44_

-- _' 301-0_9-002 V-20
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_ TABLE V-2 EVALUATION OF MODEl, CONTROLLABILITY

I 90 ° Hover (IGE and OGE'_ Very difficuIt to _

I control and impos-
sible to stabilize ]
on trim. (Recircu-

I lation was evident I

in the test section.)

i f 90 ° 16 to 20 Knots Roll and pitch con- ] ,-

i trol very difficult | _:
but could be sta- |
bilized on trim. |

Directional control ]fairly easy. Height |

control easy. ]
90 ° 20 to 30 Knots Roll control diffi- |

cult but pitch con- |
trol much easier. [ _

Directional and ] "_

l 90o 35 Fa,ot_ All axes feirl, , !__
solid at this speed. |
E_sy to obtain trim |

•,,. condition,easy l, i"

90 ° 50 to i00 Knots Model handles very |
well, trim flight is

|| to obtain and _
can be maintained I

hands off. ] ,!W|!

] 90 ° Sideward Flight Roll control diffi- ] ..... _i_.
cult. Pitch con- | . ._i

I

I trol easy and direc- _ ....:'_'_tional control fairly i ._.._
easy. Difficult to ] ' '_

control height. [ '.._,,'r'

I ._,__,_;90 ° Rearward Flight Roll control diffi- l| r_/_¢_._'
cult up t¢ 20 knots,

I the, less difficult |up to 35 knots. ]
Pitch control fairly ] __-_
e_y, Yaw control |

I po\,er |
adequate to

mafotain directional | _'_---

con ,.rol: ]

301-099-002 V-21
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TABLE V-2 _AIIJATION OF MODEL CONTROLLABILITY (CONT)

I Conversion An_le Airspeed Evaluation

i 90 ° Descent and Auto- Easy to control uprotation to the point where
(50 to BO Knots) wing stall occu':s,

then porpoising in

I pitch was present.

75 ° All Speeds _Comments are essen-

I tially the same asfor mast angle 90 °.

• I 60 ° and 30 ° 80 to I00 Fagots aboutEasy toallcontrolaxes.

I
?

i *Except for trim at '
30 knots where the i

model was difficult
to hold in trim.

!

1
:2

";3

-_

I "'i_'_

' I

_ 301-099-002 V-22 _
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!

HOVER TEST

MAST ANGLE = 90°

i FLAPS = 75/45 °WING FAIRING ON '
h/D = 1.0

[i 28 J J I I I I

O RUN 15

_ 26 - MEAN CAL
t| RUN 15 ADJUSTED

- 24 -- FOR ZERU ROLL

22 . -AT -+6 DEG. ROLL = I.I LB -_

u  !ti t

SPRING BALANCE ON

io ROLL CABLES INDICATED

-6 -4 -2 0 2 4 6 '_""_"'_

' ROLL ANGLE _ DEG

,:. Figure V-2. Weight Required to Maintain a Given
Roll Angle versus Roll Angle, h/D = 0.75,

_ II Wing Fairi_Lgs On

4_
V

301-099-002 V-2_,

.i
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h/D = i. 0

I _

.0012 .....

f] <,'°°_° 1// ,o

.0008

¢ ,o .0006 -

!I _ _ _ i
o -v .i !

.0004 / i

, 6F I

f., --(>- o/oo
-_, _ 75/45 °

.0002 _ WING FAIRING OFF ---- .,_,

'_. PREDICTED MODEL T = W ....
,_.<,

"I _;_:_,,. 0

i_. .005 .006 .007 .008 .009 .010 !1_..i',

I WEIGHT COEFF!CTENT, C_,

| ___
..... Figure V-4. Hover Performance, h/D = 1.0.

; I 301.-099-002 V-26
; ,b

1973022218-094



1973022218-095



Q

!

i

I HOVEP TEST
MAST ANGLE = 90°
h/D = •50

i .0014

6F .--

I O olo° ca

.oo12 A 75/45 ° --I f

i _ WING FAIRING OFF

/

/
U

.0008
I,--I
u

_ ____ _,_
I .0004 ..

_ .ooo, i
_ ,

! o , i.005 .OOb .00,1 .008 .009 .010 ,;.

: WEIGHT COEFFICIENT, CW ,

_" Figure V-6 Hover Performance, h/D " 0 5

¢-
: 301-099-002 V-28
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I O i/5 SCALE MODEL, RN < 2 X 105

_7 1/10 SCALE CI00FIB RN = 4 X 105

I _ MODEL 301 FULL SCALE, NN > 2 X I00

' Figure V-7. Wing Down Load Summary, IGE.

gml
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.... BASED ON CROSS-SECTIONAL SHAPES .....

I .... WITH ROUNDED EDGES AND FLAT SIDES .....

5 ....--SR_F: FIG _13 t_-S-EC__- 9 '-.-!I0_R_N-ER--(-1965 )
T ........

i

O i001

..... .I ( I i _

_, ; i NOTE: RN BASED ON WING CHOR_D

I i AND DOWNWASH VELOCITY i ';"
; I 1 IN HOVER

o._ l l_ .l., _ tl i I i i l. l i _

105 2 3 _ 5 6 8 1.06 2 _ 6 8 107 :
i. REYNOLDS NUMBER

Figure V-8. Drag Coefficient of Wing at _w = -90 ° _-_-
verus Reynolds Number.

, 301-099-002 V-30
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HELICOPTER L-()_P-_., .,'!,,' • :,. ,, . ..... . ,.. .

I

|
' I HOVER TESTMAST ANGLE = 90°

._ FLAPS = V5/45°

I WING FAIRING ON

_" | i

"' I 20 i_r---_
._- _._ _

f _

r I a .. _

m 12

_t ==

'_" l POWER REDUCTION = HPh/D = l.O - HPh/D = 0.5 _ WHPh/D _,'- = 1.0
4

I :
I 0 ...... i _70 80 90 i00 _ ...., ;.

GW/a ' LB

I '

I ..__
Figure V-9, Power Reduction in Ground Effect,

!
a V-31

i' _ 301-099-002

1973022218-099



4_

HELICOPTER co'_P_%V ,t:t,r.tT *..... _,h,' - ' ". "*'. ,J
!,
t.

| 1.0 l.l 1.2 i_Ji

l T/(T)h/D = 1,0

,,. Figure V-IO. Vertical "Spring" in Ground Effect.

<
:_", '. 301-099-002 V-32
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L_

i• I I i
LSWT 418 ROD MOUNT

I0 LEVEL FLIGHT MAST ANGLE = 90°

z 8 I i FLAPS = 45/25 ° 0°
i

..... STABILIZ_.R INCIDENCE =

I m_. GW = ii,000 LB

I 6 •

.: _ +i

I --" GI E3

I 2 / •0

I
8

• i, =_ rl

I' 0-_ I

..... _--- - ,[,_

- i

J

." 8 _ I I 1 I 1 21

I,; GENgRA_RS PTS _ _-- --- -- CSt__ ._
O OFF G0-89 I ' ,_

_- ! E1 ON 3_ I-3_ l_l 1 1
_ I __ _ 4 •

"1 22!

-4 .....
0 20 40 _0 80 [00 120 " ,_,

•_" V,KTAS

Figure V-II. Concluded ___

_k

V
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J I.BELL I I_,e or dl'.,( Io_,.re id ddtd On lh_'_ isdhv i _,-IELICOPTER COMPANY _,p_h]('(l b, ttH, rf,_,Iri(|;(_fl r,H th,, t,tl* _ld,,_
I

I

i I
LSWT 418

I _ _ LEVEL FLIGHT

:' 0 '_

z O ii000 LB 80-89

! .o
_o O _o _ _-___.--m° 4 -[_) 15500 LB 158 (ON STOPS)

I _ _ 2

'= c_ 6) (') -! I _ .... _,

| !.
• ROD MOUNT

; _ MAST ANGLE = 90°

1 _ _ -_ FLAPS = 45/25 °

_" "_ _ ['] WITHOUT VORTEX GENERATOP._ *
-_,_ 0 _ "" STABILIZER INCIDENCE = 0 '_

_. _ <> _ _,_

:" I 0 20 40 bO 80 i00 120 "-:.,,,

V,KTAS

i Figure V-13,. Effect of Gross Weight on Level FlightTrim Parameters, Mast Angle 90 °.

I "
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" _' _ BELL [ [,_e or (,I,CIC_LIrP O, dslJ Grl lhi, ,)dq, _,,_. HELICOPTER COMPANY _,ubJecttOtho restr*ch_,n,_ntrlt, hits- pu*,,

] I I L ' ' ' 'LSWT 418 C81 PTS GW

_' I 12 ROD MOUNT LEVEL FLIGHT O 80-8q !1000 LB
MAST ANGLE = 90° _-'----Q 147-153 13000 LB

_" _ FLAPS = 45/25 ° -----o----<> 154-157 iA250 LB10
# _ WITHOUT VORTEX GENERATORS (ON STOPS) D 158 15-= LB

"_}"[ I _""'1_ 8 STABILIZER INCIDENCE1 =IO° _l'_v I I 1

4 _ _

,' 2. " l "" "" I ':"

I _ 4 -- []

" 0 I •
J

._ I i i

< (,) ! ) r,'l e,,, ()

_'_ _ "-" 0 - _----_ ""
_- <_ _ - _ "- ,,, _ ._... _....

-4 _

'_ 1 0 20 40 60 80 i00 120 _/
V,KTAS

Figure V-13. Concluded
,C
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|

.. i it,o _ i I I ' I ....

, i I , J I i

: 12o / i
- o'--. 100 ....

: z 8e I
,- ,,.j I

-.'_ .'_ 60 I I

L-. I LSWT 418-2 ROD MOUNT7",

_ 40 -- LEVEL FLIGHT MAST ANGLE = 90°

_" I ' WING OFF_ 20 _ -- STABILIZER INCIDENCE = 0°

_. ] ROLL FREE

i!i o , ,....,,,,I[,
15 ......

• | _
L I0 '

, -_. _ 5 _ GW PTS -

__ _""_ "_'_ O 11,300 LB 517-572

_" [-] 13,000 LB 574

> 0 _ i A 13,200 LB 573

_ _ -3 I z l ' ' ' 'WING FAIRiXG ON I______]
J 0 Ii,000 LB $0-S9

| 2 I"
I

0 20 40 O0 80 tO0 120
.._._,

V,KTAS

I

Figure V-U4 Continued
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1

:I ROD MOUNT

MAST ANGLE = 90°
, WING FAIRINGS OFF

_ I RoILSTABILIZERFREEINCIDENCE = 0°

_ I 12 i ] , [ l], ,"_ GW PTS .'
.i i0 _ O 11 300 LB 5!7-572-

";'" i _ [_ i3,000 LB 574,
z S ....... A 13,200 I.g 5"3

I t I T

_ _ |_ _,' _ wINGF_I_Go,,: .
: I ,.a_'"_ 9 () I_[]'" • 11,000]LB I SO-a'OI _ "_•_" () Cb - - I ,,. _.

I o _o _o _o _o _oo ,_o :_..
"" V,KTS

I

Figure V-I_. Concluded ....
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HEU_.(_P"Ir-ER cz:_t_,,_v qJble(t _o the reMrKtlofl on the h.(,' pc_e

";£,;: F iight
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Figure V-25. Variation of Trim Parameters With
Fuselage Angle of Attack, Mast Angle 90 °.
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I
Vl. ANALYSIS OF RESULTS

! -
The test data have been analyzed to determine qualitatively and

i quant_ .atively the effects of the rotor wake on the empennage.The _'esults of this analysis will be used to update the Model
301 flight simulation mathematical model.

I An analysis of the discrepancy with regard to predicted aud mea-sured flapping was also made and is discussed below.

I A. Analys:s of Rotor Wake Tuft Grid Patterns and Smoke Observa-tions

I A tuft grid measuring 3 by 4 feet and located 6 inches aftof the horizontal stabilizer trailing edge was used to
visually oh, erve the rotor wake in the vicinity of the
empennage. A camera located downstream of the grid was

J used to record the tuft patterns. The tuft grid installa-tion was shown in Figure IV-14.

I Figures VI-I and VI-2 have b_en sketciL_d From photographs ofthe tuft grid patterns at several airspeeds ond attitude
conditions. The photographs are presented In kppendix C.
The camera was laterally displaced fr)m the center of the

I grid creating a skewed of the tufts in the photo-image
graphs. The sketches in Figures VI-I and V!-2 have been
drawn without the distortion of the patterns as shown Jn

| ' o
the photographs. In the s_<etch_s the flow streamlines
represent the direction of flow only and @o not _ndicate
magnitude.

I !l_e flow at the horizontal stabilizer for 16 and 20 knots,
Figure Vl-l(a) and (b), was not well defined as the tufts _-
fluctuated considerably. The photographs and sketc,Les at p

J these speeds represent one in_,tant in the fluctuations; _"_hence care must be ta_",n in interpreting them. The net •
effect of the rotor w=_e at these speeds appears to be a

downwash on the horizontal stabili_er (this was also indi-
cated during smoke studies of the rotor wake). However, : I*;"
the strain gage balance data indicates a net upwash effect
on the stabilizer at these speeds.

! ;i ,

At speeds above 20 knots the flow became more distinct° _;
The flow p_tterns at 30 and 40 knots, presented in Figure

I Vi-I(c) and (d), shows the rotors vortices rolled up di_'ect!yabove the horizontal stabilizer. At these speeds the rotor
wake has the characteristic of the wake of a low aspect ------

ratio wing with the net effect of an upload at the horizontalstabilizer. The upload is probably due more to vortex
induced _ift than to a physical upwash at the horizontal -_-_

301-099-002 VI-I

!

1973022218-180



,. A. (Continued)
4_

I stabilizer. Analysis of balance data also _=bows that Phe
effective dynamic pressure at the horizontal stabilizer

is up to twice the freestream dynamic pressure.

The tuft grid was not used at speeds higher than 140 knots.
;)- Smoke patterns at higher speeds shot.: rotor vortices mov_

i Gownward and outward as speed increases. At 50 knots thevortices were slightly outboard and below the hor_'zontal
_, stabilizer - vertical fin junctions. A net upwash over the

I span of the hoT.izontal stabilizer, induced by the vortices,was clearly visible. The upwash was evident at speeds uo
_. to I00 knots.
f-

I F_ow patterns at an airspeed of $0 knots an(] yaw anFles of
• 0 and I0 degrees are compared in Figure VI-2. At It, degrees

_ right yaw the right rotor vortex core .:s clear of the empen-
nage while the left uotor vortex core is nearly centered

..-,:_:_ on the horizontal stabilizer. This shifL _n the position

__ of the vortices with respect to the empennage has two effects:

I (i) Tae strength of the vortex lift on the horizontal
s_abilize)- is red_ced, reducing the upload and pro-

, ducing a nose up pitching morner , a._d

I (2) for yaw an_les between 0 and 12 degrees, directional

i stability Is reduced by the right fin being immersed

in the right rotor :orte-'. At yaw angles greater than
._ 12 degrees the vorte.',from the left rotor increases

the effectiveness of the fins and the directional

: , stability is increased over that of tha basic airframe.

Smoke studies showed that the rotor induces a strong upwash
on the wing inboard panel even at speeds as low _s 20 knots.

:" I
,d_ This is clearly evident in the balance pitchin_ moment data

presented in Section V, where wing stall occurs at several \_

,; degrees IGwer angle of attack rotors-on than for rotors- _

I off. _
B. Determination of Net Effect of Roto_ Wake at Empenn._e ,;_,

" i. Downwasn at Horizontal Stabilizer Rotor._ Off

The dcw[,wa_h at the horizontal stabilizer was deter-

mined usin$ pitching moment data from _ail-off, tail-
on and incidence (iN = 0 ° and iH = -a runs to obtain

-_ the wake angle. Rotors-off, the wake _s the wing down- --

wa._h (_W/H ). The method of obtaiuing the wing _io_nwash
is as follows: ....

301-099-002 Vl-2
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I
1. (Continued)

I Knowing,

I CmH = C - C
mTAIL_ON reTAIL-OFF (1 )

I = _all N V--H _ (2 )H%,B H

I = (Gin. = - C )/-_ (3)Cmi H iH -4 o mi H = 0 o

" I =-all "HwB VH (4)

I then _H = CmH/C • (5)' mlH

O _./ %1

_ =_F - _ + + (6)W/H e

j giving _W/H = _F - _H (7)

7 I The horizontal s_ab_lizer lift _rve slope was estimated_. using the method of USAF Datcom LC; corrected to the ".
model's Reynolds number. The horizontal tail volume _

I (VH) was obtained from model geometry. Knowing these ;,'"two parameters the dynamic pressure ratio at the hori- _. _
zontal stabilizer was determined as follows:

I aH = .054/degree
_ p

SHf H

.. _Hwn = CmiH/aHV}_ (8) _-_'-.

I The horizontal stabilizer characteristics , Cm, , _}{ --.--_
(CmH _H

and _HwB ) wing (Cw/H) _ .
and dowLwash for rol-ors-of f,

mast angles 90, 75, 60 and 30 degrees are shown in

I 301-099-002 VI-3
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I
i. (Continued)

I Figures Vl-3 through VI-6. The idrge amount of scatter

in NHw B is due to the very low test dynamic pressures.

I Force model data at higher dynamic pressures do not show
as 'nuch scatter. Also, the force model data show higher

i values of _HwB, indicating the horizontal stabilizerlift curve slope for the aeroelastic model to be esti-

mated too high. The values shown for NHwB should only be

I used in conjunction with the lift curve slope noted in
the figures.

_ I The rotors-off downwash is used in the current flight
simulation mathematical model in computing the total

,_ wake. The wing downwash is assumed not to change due

I to the induced flow of the rotor other than by how theaverage wing angle of attack changes due to the induced
flow of the rotor.

I Rotors-off runs where made at the same equivalent air-
speeds as for the rotors-on tests. This was to elimi-
nate any differences due to Reynolds number effects.

2. Downwash at Horizontal Stabilizer - Rotors On?,

I The horizontal stabilizer characteristics, rotors-on,_E are computed similarly to rotors-off except the total ,:

;_:. wake (_T) includes the elevator settings for trim. _._

_: I Elevator effectiveness (re) was outained from an ele- .,._'+,

vator s_eep enabling the total wake angle (_T ) clue to -:

'_" I the wing and rotor to be determined as zollows: _ "

: Cm = -aH 9H T a H (9) _

ZHRO _DRS-ON "" "

I Cm_ = -all _'HT vH _e (II)
eROTORS_ON _ -. _

I

J
301-099-002 VI-_ II_

1973022218-183



(_ BELL i Useor dn_.(to%.reof dat_on tht_,I:_e .%HEUCOPTIER co_P,*_Y Sublet tO the re_.tr..honon the Idle l)_e

t
2. (Continued)

I therefore, , = C /C (12)- / m.e m

I
Cm,/C m °

aH .1 i H o
t = (13)

) and a H = a F - (T + re_ e (14)

_ = a F - a H + (15)c_ giving ( T re_e

= - C /aHV H (16 )
_" I _H T m.%

::.. HROYOR-ON

I These values for level flight mast angles 90, 75, 60,
and 30 degrees are ,_hown in Figures Vl-7 through VI-IO.

I A compsrison with the rotors-off values for 80 knots is• also shown. The total wake (_T) indicates an upwash

occurring for all mast angles and pitch attitudes tested

I except for mast angle 30 degrees. Most noticeable isthe large increase in dynamic pressure ratio at the

tail (_HT) at low speeds for mast angles of 90 and 75

I degrees. (This term was omitted for mast angl_s of _"

_ 60 and 30 degrees since incidence sweeps were not madeat these mast angles.)

The slope of the total wake with angle of attack
_ (0 (T/Sa F) is an indication of the level of aircraft i

;'*_ I static stability. The steeper the slope the less stable_.., the aircraft. This is obtained from the following *
_.. equation.

I C = C + G (17) _ "

ma m mall" _TAIL-OFF

!_ " Since static stability (Cma) is proportional to the _*_7_

I , andhorizontal stabilizer Cm_ H

ma H

I
_" Vl-5
£. 30£-099-002

1973022218-184



I
"'- _ ,_:_,_ _I_ F'. 4 "_ _ _ d' _ _..

,ooocooooooh.,
._- _ HEU(_(_II_R Co_Y ] Jsuble(lIo the' re%trchon on the Idle l_qe
? J

I 2. (Continued)

_-, ] l-nerefore, the greater aE /(9_ the smal!cr t_,e.,co_e_h,,-,,
_, | T F

_._. tion of the horizontal stabilizer to static stability.

_ m As shown in Figure VI-7 for 40 knots this slope is _reater
' I than 1.0 at negative pitch attitudes and almost 0.0 at

positive attitudes, i.e., the model is unstable at nega-
,:, tire attitudes and stable at positive attitudes. At 60

I and 80 knots the slope of the wake about trim pitchattitude is less than for rotors-off showing the model
to be more stable rotors-on than for rotors-off.

I The total wake angle (E_,) at the horizontal stabilizer isJ.

made up of the wing downwash (_W/H) and rotor wake ('R/H).

I The rotor wake angle was computed usin_ the followingequations :

: _ + (19)
T W/H ER/H

I therefore.

i _R/H = _W/H - _T (20)
The magnitude of the rotor upwash contribution was deter-
mined as follows:

KR/H ViR = V_. tan _R/H (21)

I Where the term Vip is the rotor induced velocity at the .
rotor disk. The KR/H term is that used in the current :
math model to include the rotor wake at the horizontal.

I This parameter is given in Figures VI-II through Vl-15
._ for the various mast angles, airspeeds, and fli;_ht condi-

_ I tions tested, i l!
_:/ It should be noted that the term KR/H ViR is merely a

convenient way to represent the rotor wake effects on _i%
_: i the horizontal stabilizer and does not represent the _-'- __

• I actual upwash or downwash from the rotor. This is

.._ illustrated by the facu that by taking the vector sum cf

_.: I freestreamvelocityand the rotor induced velocity i.:ifactor (KR/H ViR) does not give the total velocity indi-

cated by the m_sured horizontal stabilizer efficiency

I (Figures Vl-7 and -8). Furthermore the variation ofKR/H ViR with airspeed shown in Figures VI-II through -15
_.,, implies the rotor induced velocity increases with airspeed "-

I which is opposite to the momentum theory of rotor inducedvelocity. These differences are believed to be the result __.

of vortex induced lift. However, combining the NH and KR/H

I ViR in the math model does give the correct empennage lift.
im
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2. (Continued)

I The rotor wake at the horizontal stabilizer measured in
this test is compared to that used in the Phase I flight
simulation in Figure VI-16. It should be noted that in

m the Phase I simulation qT was assumed equal to 1.0 and :
the downwash/upwash was assumed invariant with angle of
attack.|

i • 3. Effect of Yaw on Downwash at Horizontal Stabilize___rrm As the aircraft yaws the net rotor wake effect on thehorizontal changes from an upwash to downwash causing
a pitch-up with yaw. Tb.e rotor wake velocity is shown

I in Figure VI-17 through VI-19 to illustrate the changein the magnitude of the rotor wake with yaw angle.
This effect was evaluated during the rod test and found
to require only a small amount of longitudinal cyclic

I to maintain pitch attitude with yaw. ,

4. Effect of Rotor Wake on Vertical Stabilizer Character-

I istics ....
Rotor wake effects on the vertical stabilizer were eval-

I uated in terms of a parameter defined as the rotor side- $wash factor (K_). This is the ratio of the vertical

stabil_zer yawing moment _'otors-on to rotors-off and is

I determined as follows:

Knowing, C = C - C (22)
nV nTAIL_ON nTAIL-OFF

I C = a _ (I -0_/0_)____) (23)

cn =. av Vv q (I - O_/OB)oN_ (2.) i-_-;

I VROTORS_O N T _::.:

m theref or e, Cn. _'_.
vRO TORS -ON

K = (.0.5)

Cn V
i /3 ROTORS -OFF

| T (26) *---- -
_WB _l -_/afl)OFF

_" _Z"' 301-099-002 VI-7 -_
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_' 14.. (Continued)

" I•_ This term is shown in Figure VI-20 through VI-22 for

" I the various airspeeds and mast angles tested. The

rotor wake is destabilizing for yaw angles of -+4 degrees
at low speeds for mast angles 90 and 75 degrees. Above

' twelve degrees yaw the rotors-on yawing moment exceeds
that of the rotors-off. This effect also exists at mast

I angles of 60 and 30 degrees, although to a lesser degree.",. The directional stability is decreased for up to about
four degrees of yaw and then increases as yaw angle

I increases. However, the yawing moment coefficientrotors-on did not exceed that of rotors-off.
f_

_;_m 5. Empennage Lift Characteristics

i I Empennage lift, rotors-on, is compared with lift rotors-
off in Figures VI-23 through VI-26. Empennage lift

I is in general higher than that for rotors-off, reflec-ting; the net upwash effect of the rotors on the
horizontal stabilizer. The decreasing difference

I between the rotors on and off lift with increasing speedreflects the fact that the rotor wake effects become ,."
i"

less significant at the higher speeds, i

I C. Analysis of Discrepancy Between Measured and Calculated
ia tera I FI_ appinK- i

I At mast angles 90 and 75 de_rees the measured lateral flap- I• ping was found to be approximately 40 percent greater than
_, that predicted prior to the test. Figure Vi-27 compares the

i measured and predicted flapping. Several possible reasons_. for this discrepancy were theorized including aerodynamic
_- interference between the wing and the rotor. (This was

_ resolved by removing the wing fairings and flying the model _

I at the same trim condition. Flapping was nc_ changed.) :o/ However, smoke studies of the rotor induced flow indicated :
_" that the longitudinal distribution of induced velocity was •_
_'_ I considerably different than that used in the theory. It_ _;_
_. | was therefore concluded that the theory used to predict i_<
_._ lateral flapping was deficient with regard to the math .
_ , model of the rotor induced velocity. _

_ I. l_,duced Velocity Representation Used in Pretest Predic- _,_
tlons

-_:. Program C81 was used to predict blade flapping prior to
_. the test. In hover C81 uses a triangular distribution .,__

, of induced velocity such that

"'-'"Vi
_ %,.
4

301-099-002 Vl-8
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i. (Continued)

I where _i is the local spanwise induced velocity, ×is
the nondimensional blade radius, r/R, and "V is the

_ _ average induced veloclty. For forward flight the tri-
m angular distribution is modified to increase the induced

_ velocLty at the rear of the dlsc (_ = 0 ) and reduce t
m at the front of the disc ('_ = 180 °) as suggested in ,

I Reference 19. The downwash distribution is then assumed

, equal to

I V i = X (I + K cos O) _

• where K has the following values
I

K :

I 0 _ < .1067 . # i
< II 25

.1067 < _ < .5733 1.36-1.5_ !

I !
_;.5733 0.5

I These values for2_ were derived for low disc loading,
low twist rotors and have provided reasonable corre- _
lation with such rotors. By modifying the value of K

I arbitrarily to reflect the higher disc loading, high
twist, tilt rotor, good correlation with the test data
can be achieved. Figure VI-28 compares the eriginal

I longitudinal distribution of induced velocity _lith oneobtained by modifying the value of K to achieve correla-

tion. Also shown" is the approximate shape of the

I longitudinal distrzbution ooserved during smoke studies ._of the rotor wake. The very high value of induced i
velocity at the trailing edge of the disc is probably _._
due to roll up of the rotor wake. !_

I ";_2. Investigation of More Advanced Methods of Predicting ;"_
Lateral Flappin_ -_ - ' "

i The significant difference between the computed andobserved distribution of i_duced _elocity indicted a
better method of prelicting the distribution is needed.

I into more advanced means of'_herefore, investigationall

predicting the distribution was made. ,

I A recent study of Harris, Reference 21, indicates theproblem of predicting lateral flapping accurately is not
confined to high disk loading tilt rotors. In Reference -'-

I! 21 a comparison is made between the lateral flapping t301-099-002 Vl-9
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I

I 2. (Continued)

, predicted by several induced velocity theories with that

I measured with a low disc loading model rotor. The trendof the measured flapping with advance ratio was similar
to that measured in this test and the maximum lateral

+ • flapping occurred at nearly the same advance ratio
(_ = .08 compared to 091) Harris com_red downwashI
theories ranging from uniform downwash to prescribed , _
helical wakes. In no case did the predicted flapping

I exceed 70 of the measured Several _-percent flapping.
c theories, specifically that of Castles and DeLeeuw,

Reference 22, and Heyson and Katzoff, Reference 23, pre-

I dicted the correct trend with advance ratio but were offin magnitude by as much as 50 percent. _

I A comparison between lateral flapping predicted usingvarious induced velocity theories, including those
investigated by Harris is given in Table VI-I for mast
angle 90 degrees, airspeed _0 knots (the speed for

I maximum lateral flapping)• Castles and DeLeeuw's and '_
Heyson and Katzoff's theories predict 57 percent and

67 percent of the measured lateral flapping respectively.

I Both are based on a prescribed wake geometry with Castlestheory being for a uniform disc loading and Heyson's :_
accounting for the nonuniformity of the loading. The
distribution of induced velocity predicted using Heyson

I and Katzoff's method is very close to that observed in
the test but the magnitude is too low. Also shown in Table _

Vl-I is the flapping predicted by Bell computer program

I BRAM, Reference 2_, which has a free trailing tip vortex.This accounts to some extent for the roll up of the wake
but neglects the nonuniformity of the blade loading.

I BRAM comes closest to predicting the measured lateralflapping.

i 3. Prediction of Lateral Flappin_ For De_sign Purposes
'_m Although none of the more advanced induced velocity

theories satisfactorily predicts the lateral flapping, a _

_"' I method is available for design purposes. As noted

_i earlier, by arbitrarily modifying the factor K used in '
the present C81 induced velocity representation to

i_ distribute the induced velocity longitudinally, goodI correlation with the measured flapping can be achieved.
Figures VI-29 through VI-32 compare the flapping pre-
dicted using the modified value of K with the measured

_ _ values. Correlation is good at all mast angles.
|

_. While this approach is not sophisticated it does achieve -_--

I the basic objective of predicting the lateral flappingand is felt to be acceptable for design purposes. This
method has the advantage of using a m_rzmum of computer

"_ • time whereas a free wake analysis such as BRAM requires
| a large computer run time. "_

j,

' _ 301-099-002 VI-10 j
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I TABLE VI-I. COMPARISON OF LATERAL FLAPPING CALCULATED USING

SEVERAL THEORIES WITH MEASURED LATERAL FLAPPING

I /.
!

I Flight Condition _m = 90°' GW = !i,000 LB, _0 Kqots

Measured b I Flapping = 6 Degrees I _

Theory b I Flapping % Of Measured ;'_

I Pretest (Drees) _.i° 68% _

I Post Test (Drees) 2 6.0 ° 100%

Castles and DeLeeuw 3.3° 57%

I Heyson and Katzoff _.0° 67% ,_&

I

, I i. _test data.

I 2, Longitudinal distribution factor adjusted to achievecorrelation.

I

I
$

\

• _ _

--__;" 301 -099-002 VI-II
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I VII CONCLUSIONS_i

I Observation of model behavior and analysis of measured data re-sulted in the following conclusions:

'_' m A. Hover
& I

i. The hover test confirmed the presence of a static roll
instability in an IGE hover. The magnitude of the

_ instability was comparable to previous estimates and the
instability vanishes at airspeeds above approximately
20 knots.

:|' 2. The wing download in hover was greater than that estimated
from Drevious test results. The measured download was
11.4 percent compared to t_,e 7 percent estimated for the

I full-scale aircraft. Analysis indicates this
di_cre pancy

may be the result of the model's very low Reyno£ds
number.

I 3. Attempts to fly the model in a controlled hover on an
essentially free-flight mount were not successful.

I Failure is attributed to the model's response being ifaster than full-scale by a factor of 2.24_ and because .
' the model pilots lacked many of the cues normally avail-

I able in hover.

B. Low Speed Helicopter and Conversion Mode

i. Flow visualization techniques confirmed that the wakes !
' from the two rotors do not merge and analysis of balance

_" m data indicate that the rotor wake has the effect of an i

I upwash on the horizontal stabilizer. _',

'_ 2. At mast angles of 90 and 75 degrees, a shallow longitu- _

I dinal stick gradient occurs between hover and 60 knots liarand a slight stick reversal occurs between 20 and _0
knots. The shallow gradient and reversal are caused by _

i the rotor wake influence on the horizontal stabilizer.
! 3. The inter-action between the rotor wake and the horizontal

stabilizer causes a nose-up pitching moment when the air-

craft is yawed. The longitudinal cyclic required tocompensate for the pitching ,qoment is easily within a
pilot's ability. With the o,,_o the altitude-hold

loop will make the required cyclic input.
4. The rotor wake acts on the vertical fins in such a manner

i as to reduce directional stability for sideslip angles

:, , 301-099-002 VlI-I
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less than about 12 degrees and to increase it for larger
sideslip angles.

I 5. In aatorotation, at the speeds tested (80 and 90 knots),
the model was very stable but had a rate of descent in ,,_:_

i excess of _000 fpm, compared to the 2200 fpm predictedfor the Model 301. Analysis indicates that the model's
low Reynolds number is responsible for its higher rates
of descent and that the rate of descent predicted for '

I the Model 301 is considered a reasonable estimate.

6. On the rod, the model was difficult to fly at speeds ?

I below 30 knots but was controllable. Above 30 knots,the model was relatively easy to fly. Controllability
was adequate for rearward and sideward flight at speeds

I up to 35 knots.
7. Lateral flapping in helicopter mode was approximately

_0 percent higher than predicted but was within flapping :_

I limits for all conditions tested. Analysis shows that ,_the theory used fo__ the pretest predictions employed a :_
representation of the longitudinal distribution of induced

I velocity which was not representative of the observed in- ,_duced velocity distribution. By modifying the distribution .,5
good correlation with the measured flapping is achieved. _

I C Dynamic Stability Loads, and Vibration _{_

i. There was no evidence of rotor or rot'_-pylon-wing

I instability during the tests, i

2. Scaled rotor and control system loads were significantly

_ I lower than those predicted for the full-scale aircraft.I
@_ 3. Airlcame vibration levels were higher than predicted but i_

within design limits. The magnitude of the two-per-rev 1
_ I vibration indicates care will have to be taken to avoid

, resonance of airframe modes with two-pcr-rev.

I D. Correlation of Theory With Measured Data
i. When Reynolds number effects are properly accounted for,

theory adequately predicts model trim parameters and

I characteristics• of modelstability (Extrapolation
,. flight characteristics directly to full scale is not
_ recommended because of Reynolds nt_nber effects.) -"

I 2. Theory predicts the measured lateral fl,appin_ when the ,.
rotor longitudinal distribution of induced velocity is

_'" I correctly represented.
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